
The Power of Pi
Wouter Swierstra

Joint work with Nicolas Oury

Why is dependently
typed programming

interesting?

Cryptol

Cryptol: example

x : [32]; -- a 32-bit word

x = 1337;

• The type of a word records its size.

Cryptol: example

swab : [32] -> [32]

swab [a b c d] = [b a c d]

• You can eliminate a word of size n*k by
pattern matching on it as n words of size k.

Words

data Vec (A : Set) : Nat -> Set

 Nil : Vec A 0

 :: : A -> Vec A n -> Vec A (S n)

Word : Nat -> Set

Word n = Vec Bit n

Views

• Introducing Cryptol-style pattern matching
on words entails:

• Defining a data type WordView indexed
by a Word (n * k);

• Defining a function view that produces
a suitable WordView xs, for every
xs : Word (n * k).

WordView

data WordView : Vec A (n * k) -> Set

 Split : (xss : Vec (Vec A k) n)

 -> WordView (concat xss)

View

chop : (k : Nat) -> Vec A (n * k)

 -> Vec (Vec A k) n

view : (xs : Vec A (n * k))

 -> WordView xs

view xs = ... Split (chop k xs) ...

Example

swab : Word 32 -> Word 32

swab xs with view xs

... | Split (a :: b :: c :: d :: Nil)

 = concat (b :: a :: c :: d :: Nil)

Data description

• There’s been a lot of recent work on data
description languages;

• Given a file format description, a tool can
generate:

• data types;

• parsers;

• pretty-printers; etc.

Bitmaps

The PBM monochrome bitmap format is one
way to generate black-and-white images:

 P1 50 100\n OIOOOIIIOOOIIOO...

Haskell & PBM

• A PBM parser must return [[Bit]]...

• Even though there exact size of the bitmap
is known once you’ve inspected the header;

• Many, many binary file formats are
structured the same way.

Data, dependently

• In dependently typed languages:

• you can define a data type of file formats;

• and get parsers and printers for free;

• and provide this functionality as a library.

A small universe

data U : Set where

 CHAR : U

 VEC : Nat -> U -> U

 BIT : U

elU : U -> Set

Formats - I

data Format : Set where

 EOF : Format

 Bad : Format

 Read : (u : U)

 -> (elU u -> Format)

 -> Format

Formats - I

data Format : Set where

 Skip : Format -> Format

 -> Format

 ...

Combinators

>> = Skip

>>= = Read

char : Char -> Format

char c = CHAR >>= \c’ ->

 if c == c’ then EOF else Bad

PBM Format
PBM : Format

PBM = char ‘P’ >>

 char ‘1’ >>

 NAT >>= \n ->

 NAT >>= \m ->

 (VEC n (VEC m) BIT) >>= \v ->

 EOF

Format Universe

el : Format -> Set

el EOF = Unit

el Bad = Empty

el (Read a b) = Sigma (el a)

 (el . b)

el (Skip a b) = el b

Read and Show

read : (f : Format) -> List Bit

 -> Maybe (el f)

show : (f : Format) -> (el f)

 -> List Bit

...

Discussion

• No recursive types – to keep things simple.

• Programmers can define their own generic
functions, such as boolean equality tests.

• You may want to define another view on
the resulting data type.

• Meta-theory for free!

Haskell & Databases

• Haskell database interfaces:

• represent everything by a String;

• use extensible records;

• use type class tomfoolery.

• ... accompanied by a preprocessor.

What’s missing?

• A proper interface should:

• connect to a database to query the type
of all the fields;

• compute the type of the database
schema;

• ensure static properties, such as the size
of strings or the type of a query’s result.

Data Base types

• All data base systems have a small number
of primitive types – another universe!

• A data base attribute corresponds to a
pair (String, U).

• A data base schema corresponds to a list
of attributes.

Setting up the
connection

postulate

 Handle : Schema -> Set

 connect : ServerName -> TableName

 -> (s : Schema)

 -> IO (Handle s)

Relational algebra

data RA : Schema -> Set where

 Read : Handle s -> RA s

 Union : RA s -> RA s -> RA s

 Project : (s’ : Schema)

 -> Subset s’ s -> RA s -> RA s’

 ...

Executing queries

query : (s : Schema) -> RA s

 -> IO (List (Row s))

• We know how the type of the query
statically.

• Need to render an RA s as an SQL
expression.

Discussion

• Quotient types would be nice.

• There are plenty of other guarantees we
would like to give – limit on string size.

• Tackle the object-relation impedance
mismatch!

• Precise data types

• Views

• Universes

Future work

• Domain-specific embedded type systems;

• Hardware description languages;

• Typed shell;

• Typed bindings to dynamically typed
languages;

