
Dependent types for
distributed arrays

Wouter Swierstra
joint work with Thorsten Altenkirch

Arrays

1 1 2 3 5{

Distributed arrays

{1 4181 67651 ... {
...

Golden Rule

Local access is quick;

remote access is slow.

Efficient code

• High-performance languages place
restrictions on non-local array access.

• An operation that accidentally breaks the
Golden Rule results in an exception.

• How can we avoid such exceptions?

Locality-aware IO

• Types with information about where the
computation is executed.

• Think of IO a p as the type of a
computation at location p returning a value
of type a.

Consequences

read :: Int -> Array -> IO Int ?

• The location depends on the array and the
index you are accessing.

Consequences

read :: Int -> Array -> IO Int ?

• The type of this function depends on the
value of its arguments.

• Grothoff, Palsberg, and Saraswat have
designed a type system for distributed
arrays, based on a dependently typed lambda
calculus.

Domain-specific
embedded type systems

• Designing a type system is a lot of work!

• Can’t we use enforce these invariants using a
general purpose dependently typed host
language, such as Agda?

• Implementation and meta-theory for free!

Overview

• Embed the syntax and semantics of
distributed array operations in a
dependently typed language host language;

• statically enforce locality constraints;

• extract efficient code from our specification.

Terminology

• Any processor that executes code and stores
data is referred to as a place.

• We will call an index in the array a Point

• We postulate a global distribution:

 distr : Array -> Point -> Place

Syntax - I

data IO (a : Set) : Place -> Set

 Return : a -> IO p a

 Read : (a : Array)

 -> (i : Point)

 -> (Int -> IO (distr a i) a)

 -> IO (distr a i) a

Syntax - II

data IO (a : Set) : Place -> Set

 ...

 Write : (a : Array)

 -> (i : Point) -> Int

 -> IO (distr a i) a

 -> IO (distr a i) a

Syntax - III

data IO (a : Set) : Place -> Set

 ...

 At : (q : Place)

 -> IO q ()

 -> IO p a

 -> IO p a

Auxiliary definitions

• We can define smart constructors:

 read : (a : Array)

 -> (i : Point)

 -> IO (distr a i) Int

• and show that the IO data type is a monad.

Example: for

for : (Point -> IO p ())

 -> Array -> IO p ()

for io a = worker 0

 where worker i =

 if i == (size a) - 1 then

 then return ()

 else io i >> worker (i+1)

Example: dmap

dmap : (Int -> Int)

 -> Array -> IO p ()

dmap f a =

 for (\i -> at (distr a i)

 (read a i >> \x ->

 write a i (f x)))

Heap

data Heap = List (List Int)

type Array = Int

type Point = Int

Semantics - I

run : (p : Place) -> IO a p

 -> Heap -> (a, Heap)

run p (Return x) h = (x,h)

run p (At q io1 io2) h =

 run p io2 (snd (run io1 h))

Semantics - II

run : (p : Place) -> IO a p

 -> Heap -> (a, Heap)

run ? (Write a i x wr) h =

 run ? wr (updateHeap a i x h)

run ? (Read a i rd) h =

 run ? (rd (h !! a !! i)

Semantics - II

run : (p : Place) -> IO a p

 -> Heap -> (a, Heap)

run ? (Write a i x wr) h =

 run ? wr (updateHeap a i x h)

How do can we be sure we are
not breaking the Golden Rule?

Why is this Haskell
program well-typed?

data EQ a b where

 Refl :: EQ a a

coerce :: EQ a b -> a -> b

coerce Refl x = x

Learning from
pattern matching

run .(distr a i)

 (Write a i x wr) h

 = run (distr a i)

 wr (updateHeap a i x h)

Limitations

• This semantics is partial – that is, the lookup
functions may fail...

• No allocation of new arrays

• Both of these points are solved in the paper.

Even more limitations

• No multi-dimensional arrays;

• Arrays may only store integers;

• A fixed, global distribution;

• Synchronous semantics;

• And we need a lot of these things to do
interesting examples!

Conclusions

• Plenty of limitations – but the approach
seems viable.

• Domain-specific embedded type systems are
the way to go!

