
Power of Pi
Wouter Swierstra

Joint work with Nicolas Oury

1

Dependent types make
a language more
expressive.

2

Cryptol

3

Cryptol: example

x : [32]; -- a 32-bit word

x = 1337;

• The type of a word records its size.

4

Cryptol: example

swab : [32] -> [32]

swab [a b c d] = [b a c d]

• You can eliminate a word of size n*k by
pattern matching on it as n words of size k.

5

Words

data Vec (A : Set) : Nat -> Set

 Nil : Vec A 0

 :: : A -> Vec A n -> Vec A (S n)

Word : Nat -> Set

Word n = Vec Bit n

6

Views

• Introducing Cryptol-style pattern matching
on words entails:

• Defining a data type WordView indexed
by a Word (n * k);

• Defining a function view that produces
a suitable WordView xs, for every
xs : Word (n * k).

7

WordView

data WordView : Vec A (n * k) -> Set

 Split : (xss : Vec (Vec A k) n)

 -> WordView (concat xss)

8

View

chop : (k : Nat) -> Vec A (n * k)

 -> Vec (Vec A k) n

view : (xs : Vec A (n * k))

 -> WordView xs

view xs = ... Split (chop k xs) ...

9

Example

swab : Word 32 -> Word 32

swab xs with view xs

... | Split (a :: b :: c :: d :: Nil)

 = concat (b :: a :: c :: d :: Nil)

10

Haskell

• GHC supports:

• GADTs;

• functional dependencies;

• view patterns.

• Why do we need dependent types?

11

Bitmaps

The PBM monochrome bitmap format is one
way to generate black-and-white images:

 P1 50 100\n 00110100100010...

12

Haskell & PBM

• A PBM parser must return [[Bit]]...

• Even though there exact size of the bitmap
is known once you’ve inspected the header;

• Many, many binary file formats are
structured the same way.

13

Data, dependently

• In dependently typed languages:

• you can define a data type of file formats;

• and get parsers and printers for free.

14

A small universe

data U : Set where

 CHAR : U

 VEC : Nat -> U -> U

 BIT : U

el : U -> Set

15

Formats

data Format : Set where

 EOF : Format

 Bad : Format

 Read : (u : U)

 -> (el u -> Format)

 -> Format

16

PBM Format
PBM : Format

PBM = char ‘P’ $

 char ‘1’ $

 Read NAT $ \n ->

 Read NAT $ \m ->

 Read (VEC n (VEC m) BIT)

char c f = Read CHAR (\c’ -> ...)

17

Format Universe

< _ > : Format -> Set

< EOF > = Unit

< Bad > = Empty

< Read u f> = Sigma (el u)

 (res . f)

18

Read and Show

read : (f : Format) -> List Bit

 -> Maybe < f >

show : (f : Format) -> < f >

 -> List Bit

19

Joe Haskell
Programmer says:

“Binary data is easy. I’m smart enough to
handle it myself – I don’t need all those
annoying types.”

20

Haskell & Databases

• Haskell has no type safe database interface:

• use extensible records;

• use type class tomfoolery;

• represent everything by a String.

• ... accompanied by a preprocessor.

21

What’s missing?

• A proper interface should:

• connect to a database to query the type
of all the fields;

• compute the type of the database
schema;

• ensure static properties, such as the size
of strings.

22

Bounded Strings

• Who said Haskell was expressive?

data N1 = N1 ...

data N255 = N255

23

Bounded Strings

• Who said Haskell was expressive?

data N1 = N1 ...

data N255 = N255

class Less a b

instance Less N1 N255

instance Less N2 N255...

23

24

• Precise data types

24

• Precise data types

• Views

24

• Precise data types

• Views

• Universes

24

