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Dependent types make 
a language more 
expressive.
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Cryptol
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Cryptol: example

x : [32]; -- a 32-bit word

x = 1337; 

• The type of a word records its size.
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Cryptol: example

swab : [32] -> [32]

swab [a b c d] = [b a c d]

• You can eliminate a word of size n*k by 
pattern matching on it as n words of size k.
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Words

data Vec (A : Set) : Nat -> Set

  Nil : Vec A 0

  _::_ : A -> Vec A n -> Vec A (S n)

 

Word : Nat -> Set

Word n = Vec Bit n
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Views

• Introducing Cryptol-style pattern matching 
on words entails:

• Defining a data type WordView indexed 
by a Word (n * k);

• Defining a function view that produces 
a suitable WordView xs, for every 
xs : Word (n * k).
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WordView

data WordView : Vec A (n * k) -> Set

  Split : (xss : Vec (Vec A k) n)

        -> WordView (concat xss)
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View

chop : (k : Nat) -> Vec A (n * k) 

     -> Vec (Vec A k) n

view : (xs : Vec A (n * k)) 

     ->  WordView xs 

view xs = ... Split (chop k xs) ...
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Example

swab : Word 32 -> Word 32

swab xs with view xs

... | Split (a :: b :: c :: d :: Nil)

   = concat (b :: a :: c :: d :: Nil)
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Haskell

• GHC supports:

• GADTs;

• functional dependencies;

• view patterns.

• Why do we need dependent types?
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Bitmaps

The PBM monochrome bitmap format is one 
way to generate black-and-white images:

   P1 50 100\n 00110100100010...
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Haskell & PBM

• A PBM parser must return [[Bit]]...

• Even though there exact size of the bitmap 
is known once you’ve inspected the header;

• Many, many binary file formats are 
structured the same way.
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Data, dependently

• In dependently typed languages:

• you can define a data type of file formats;

• and get parsers and printers for free.
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A small universe

data U : Set where

  CHAR : U

  VEC : Nat -> U -> U

  BIT : U ....

el : U -> Set
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Formats

data Format : Set where

  EOF : Format

  Bad : Format

  Read : (u : U)

       -> (el u -> Format) 

       -> Format
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PBM Format
PBM : Format

PBM = char ‘P’ $

      char ‘1’ $

      Read NAT $ \n ->

      Read NAT $ \m ->

      Read (VEC n (VEC m) BIT)

char c f = Read CHAR (\c’ -> ...)
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Format Universe

< _ > : Format -> Set

< EOF >      = Unit

< Bad >      = Empty

< Read u f>  = Sigma (el u) 

                     (res . f)
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Read and Show

read : (f : Format) -> List Bit 

     -> Maybe < f >

show : (f : Format) -> < f > 

     -> List Bit
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Joe Haskell 
Programmer says:

“Binary data is easy. I’m smart enough to 
handle it myself – I don’t need all those 
annoying types.”
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Haskell & Databases

• Haskell has no type safe database interface:

• use extensible records;

• use type class tomfoolery;

• represent everything by a String.

• ... accompanied by a preprocessor.
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What’s missing?

• A proper interface should:

• connect to a database to query the type 
of all the fields;

• compute the type of the database 
schema;

• ensure static properties, such as the size 
of strings.
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Bounded Strings

• Who said Haskell was expressive?

data N1 = N1 ...

data N255 = N255
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Bounded Strings

• Who said Haskell was expressive?

data N1 = N1 ...

data N255 = N255

class Less a b

instance Less N1 N255

instance Less N2 N255...
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• Precise data types
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• Precise data types

• Views
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• Precise data types

• Views

• Universes
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