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Relabelling a tree

data Tree a = Leaf a

  | Node (Tree a) (Tree a)

relabel :: Tree a -> Tree Int



Relabelling by hand

relabel :: Tree a -> Tree Int

relabel t = fst (worker 0 t)

  where

  worker :: Int -> (Tree Int, Int)

  worker i (Leaf _)   = (Leaf i, i + 1)

  worker i (Node l r) = ...



Recursive step

  worker i (Node l r) = 

    let (l’, i’)  = relabel l i

        (r’, i’’) = relabel r i’

    in (Node l’ r’, i’’)



Recursive step

  worker i (Node l r) = 

    let (l’, i’)  = relabel l i

        (r’, i’’) = relabel r i’

    in (Node l’ r’, i’’)

Easy to make a mistake!



The State Monad

type State a = Int -> (a , Int)

return :: a -> State a

(>>=) :: State a 

  -> (a -> State b) 

  -> State b



Return

type State a = Int -> (a , Int)

return :: a -> State a

return x = \i -> (x, i)



Bind

type State a = Int -> (a , Int)

(>>=) :: State a -> (a -> State b)-> State b

c >>= f = \i -> let (x, i’) = c i

             in f x i’



Relabelling, mark II

relabel :: Tree a -> State (Tree Int)

relabel (Leaf _) = \i -> (Leaf i, i+1)

relabel (Node l r) = 

  relabel l >>= \l’ -> 

  relabel r >>= \r’ -> 

  return (Node l’ r’)



Relabelling with do

relabel :: Tree a -> State (Tree Int)

relabel (Node l r) = 

  do l’ <- relabel l

     r’ <- relabel r

     return (Node l’ r’)



Reasoning 
about monads

• How can we prove that the relabelling 
function is correct?

• Usual approach: expand definitions of return 
and bind, perform equational reasoning.

• Why not exploit monadic structure during 
the proof?



Challenge: 
verify the relabelling function, 
without expanding the 
definitions of return and bind.



Coq

• An interactive proof assistant                 
based on type theory.

• Consists of two distinct parts:

• a total functional language;

• a tactic language

• I’m assuming some knowledge 
of dependent types...



Strong specifications

• Consider the following type for division:

(n : nat) ->

{d : nat | d > 0} ->

{(q,r) : nat × nat | d * q + r = n}

• The type explains how the function behaves.

• The Program tactic enables the separation of 
concerns.



Idea:
Decorate the state monad with 
pre- and postconditions.



Pre- and postconditions

• Define the following types:

Pre = Nat -> Prop

Post (a : Set) = Nat -> a -> Nat -> Prop



The Hoare State Monad

Define the Hoare type:

HoareState P A Q = 

  {i : Nat | P i} -> 

    {(x,f) : A × Nat | Q i x f}



Remaining questions

• How can we define return?

• How can we define bind?

• How can we use these functions to verify 
our relabelling function?



Return

return : (x : A) -> 

  HoareState 

    (\i -> True) 

  A 

  (\i y f -> i = f /\ x = y)

return x = \i -> (x,i)



Return

return : (x : A) -> 

  HoareState 

    (\i -> True) 

  A 

  (\i y f -> i = f /\ x = y)

return x = \i -> (x,i)

Need to complete one trivial proof.



Bind - I

bind : HoareState P1 A Q1 ->

  (A -> HoareState P2 B Q2) ->

  HoareState ... B ...



Bind - II

bind : HoareState P1 A Q1 ->

  ((x:A) -> HoareState (P2 x) B (Q2 x)) ->

  HoareState ... B ...

What should the pre- and postconditions be?



Bind’s precondition

\s1 -> P1 s1

   /\ forall x s2, Q1 s1 x s2 -> P2 x s2

The initial state must satisfy the first computations 
precondition



Bind’s precondition

\s1 -> P1 s1

   /\ forall x s2, Q1 s1 x s2 -> P2 x s2

The initial state must satisfy the first computations 
precondition



Bind’s precondition

\s1 -> P1 s1

   /\ forall x s2, Q1 s1 x s2 -> P2 x s2

The intermediate state satisfies the second computation’s 
precondition.



Bind’s precondition

\s1 -> P1 s1

   /\ forall x s2, Q1 s1 x s2 -> P2 x s2

The intermediate state satisfies the second computation’s 
precondition.



Bind’s postcondition

\s1 y s3 -> exists x, exists s2,

    Q1 s1 x s2 /\ Q2 x s2 y s3

There is an intermediate results and an intermediate state, 
relating the two computations.



Implementing bind

• The definition of bind is exactly the same 
as for the state monad;

• but we need to fulfill one or two proof 
obligations.

c >>= f = \i -> let (x, i’) = c i

             in f x i’



Using the 
Hoare State Monad

To verify programs in the state monad, all we 
need to do is change the type signature, i.e., 
choose the pre- and postconditions.

The program remains unchanged.



Relabelling, revisited

• For our relabelling function:

• the precondition is trivial;

• for the postcondition we choose:

\i t f -> flatten t = [i .. i + size t]



Relabelling, revisited

• For our relabelling function:

• the precondition is trivial;

• for the postcondition we choose:

\i t f -> flatten t = [i .. i + size t]

Postcondition not strong enough!



Relabelling, revisited

• For our relabelling function:

• the precondition is trivial;

• for the postcondition we choose:

\i t f -> flatten t = [i .. i + size t]

  /\ f = i + size t



Demo
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