
The State Monad
Wouter Swierstra

 Hoare

The State Monad
Wouter Swierstra

Relabelling a tree

data Tree a = Leaf a

 | Node (Tree a) (Tree a)

relabel :: Tree a -> Tree Int

Relabelling by hand

relabel :: Tree a -> Tree Int

relabel t = fst (worker 0 t)

 where

 worker :: Int -> (Tree Int, Int)

 worker i (Leaf _) = (Leaf i, i + 1)

 worker i (Node l r) = ...

Recursive step

 worker i (Node l r) =

 let (l’, i’) = relabel l i

 (r’, i’’) = relabel r i’

 in (Node l’ r’, i’’)

Recursive step

 worker i (Node l r) =

 let (l’, i’) = relabel l i

 (r’, i’’) = relabel r i’

 in (Node l’ r’, i’’)

Easy to make a mistake!

The State Monad

type State a = Int -> (a , Int)

return :: a -> State a

(>>=) :: State a

 -> (a -> State b)

 -> State b

Return

type State a = Int -> (a , Int)

return :: a -> State a

return x = \i -> (x, i)

Bind

type State a = Int -> (a , Int)

(>>=) :: State a -> (a -> State b)-> State b

c >>= f = \i -> let (x, i’) = c i

 in f x i’

Relabelling, mark II

relabel :: Tree a -> State (Tree Int)

relabel (Leaf _) = \i -> (Leaf i, i+1)

relabel (Node l r) =

 relabel l >>= \l’ ->

 relabel r >>= \r’ ->

 return (Node l’ r’)

Relabelling with do

relabel :: Tree a -> State (Tree Int)

relabel (Node l r) =

 do l’ <- relabel l

 r’ <- relabel r

 return (Node l’ r’)

Reasoning
about monads

• How can we prove that the relabelling
function is correct?

• Usual approach: expand definitions of return
and bind, perform equational reasoning.

• Why not exploit monadic structure during
the proof?

Challenge:
verify the relabelling function,
without expanding the
definitions of return and bind.

Coq

• An interactive proof assistant
based on type theory.

• Consists of two distinct parts:

• a total functional language;

• a tactic language

• I’m assuming some knowledge
of dependent types...

Strong specifications

• Consider the following type for division:

(n : nat) ->

{d : nat | d > 0} ->

{(q,r) : nat × nat | d * q + r = n}

• The type explains how the function behaves.

• The Program tactic enables the separation of
concerns.

Idea:
Decorate the state monad with
pre- and postconditions.

Pre- and postconditions

• Define the following types:

Pre = Nat -> Prop

Post (a : Set) = Nat -> a -> Nat -> Prop

The Hoare State Monad

Define the Hoare type:

HoareState P A Q =

 {i : Nat | P i} ->

 {(x,f) : A × Nat | Q i x f}

Remaining questions

• How can we define return?

• How can we define bind?

• How can we use these functions to verify
our relabelling function?

Return

return : (x : A) ->

 HoareState

 (\i -> True)

 A

 (\i y f -> i = f /\ x = y)

return x = \i -> (x,i)

Return

return : (x : A) ->

 HoareState

 (\i -> True)

 A

 (\i y f -> i = f /\ x = y)

return x = \i -> (x,i)

Need to complete one trivial proof.

Bind - I

bind : HoareState P1 A Q1 ->

 (A -> HoareState P2 B Q2) ->

 HoareState ... B ...

Bind - II

bind : HoareState P1 A Q1 ->

 ((x:A) -> HoareState (P2 x) B (Q2 x)) ->

 HoareState ... B ...

What should the pre- and postconditions be?

Bind’s precondition

\s1 -> P1 s1

 /\ forall x s2, Q1 s1 x s2 -> P2 x s2

The initial state must satisfy the first computations
precondition

Bind’s precondition

\s1 -> P1 s1

 /\ forall x s2, Q1 s1 x s2 -> P2 x s2

The initial state must satisfy the first computations
precondition

Bind’s precondition

\s1 -> P1 s1

 /\ forall x s2, Q1 s1 x s2 -> P2 x s2

The intermediate state satisfies the second computation’s
precondition.

Bind’s precondition

\s1 -> P1 s1

 /\ forall x s2, Q1 s1 x s2 -> P2 x s2

The intermediate state satisfies the second computation’s
precondition.

Bind’s postcondition

\s1 y s3 -> exists x, exists s2,

 Q1 s1 x s2 /\ Q2 x s2 y s3

There is an intermediate results and an intermediate state,
relating the two computations.

Implementing bind

• The definition of bind is exactly the same
as for the state monad;

• but we need to fulfill one or two proof
obligations.

c >>= f = \i -> let (x, i’) = c i

 in f x i’

Using the
Hoare State Monad

To verify programs in the state monad, all we
need to do is change the type signature, i.e.,
choose the pre- and postconditions.

The program remains unchanged.

Relabelling, revisited

• For our relabelling function:

• the precondition is trivial;

• for the postcondition we choose:

\i t f -> flatten t = [i .. i + size t]

Relabelling, revisited

• For our relabelling function:

• the precondition is trivial;

• for the postcondition we choose:

\i t f -> flatten t = [i .. i + size t]

Postcondition not strong enough!

Relabelling, revisited

• For our relabelling function:

• the precondition is trivial;

• for the postcondition we choose:

\i t f -> flatten t = [i .. i + size t]

 /\ f = i + size t

Demo

Acknowledgements

• Graham Hutton and Diana Fulger, for
suggesting the problem.

• Greg Morrisett, Aleks Nanevski, Thorsten
Altenkirch, and many others for suggesting
the solution.

• Matthieu Sozeau for Program support.

• Draft paper and working code now ready if
you’re interested.

