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There is a row of buckets numbered from 1 to 
n. It is given that:

• each bucket contains one pebble

• each pebble is either red, white, or blue.

A mini-computer is placed in front of this row 
of buckets and has to be programmed in such 
a way that it will rearrange (if necessary) the 
pebbles in the order of the Dutch national 
flag.

A Discipline of Programming, E.W. Dijkstra
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Specification

• The mini-computer supports two 
commands:

• swap (i,j) exchanges the pebbles in buckets 
numbered i and j for 1 ≤ i,j ≤ n;

• read (i) returns the colour of the pebble in 
bucket number i for 1 ≤ i ≤ n.

• Solution should use one pass only and 
constant memory.
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Plan of attack

• Implement the mini-computer in Agda;

• Write a solution for the Problem of the 
Dutch National Flag;

• Verify our solution is correct.
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Pebbles and Buckets
data Pebble : Set where
  Red : Colour
  White : Colour

data Buckets : Nat -> Set where
  Nil : Buckets Zero
  Cons : Pebble -> Buckets n -> 
         Buckets (Succ n)
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Indices

data Fin : Nat -> Set where
  Fz : Fin (Succ n)
  Fs : Fin n -> Fin (Succ n)
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The state monad

State : Nat -> Set -> Set

State n a = 

  Buckets n 

    -> Pair a (Buckets n)
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Reading

read : Fin n -> State Pebble

read i bs = (bs ! i , bs)

  where

  (Cons p _) ! Fz = p

  (Cons _ ps) ! (Fs i) =

    ps ! i
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Swap

swap : Fin n -> Fin n 
       -> State n Unit
swap i j = 
  read i >>= \pi ->
  read j >>= \pj ->
  write i pj >>
  write j pi
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Back to the problem
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An approximation

sort :: Int -> Int -> IO ()
sort w r =
  if w == r then return ()
  else case read w of
    White -> sort (w + 1) r
    Red  -> swap w r >>
            sort w (r - 1)
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Only terminates 
if w ≤ r
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Manipulating Fin n

sort :: Int -> Int -> IO ()
sort r w =
  if r == w then return ()
  else case read r of
    White -> sort           w 
    Red -> swap r w >>
           sort r (w - 1)

    (w + 1)

       (r - 1)
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Two problems

• We need to increment and decrement 
inhabitants of Fin n ;

• We need to prove that our algorithm 
terminates.

16Monday, 14 September 2009



Fs : Fin n -> Fin (Succ n)
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Injection

inj : Fin n -> Fin (Succ n)
inj Fz = Fz
inj (Fs i) = Fs (inj i)
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Fs or inj
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Fs
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inj
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Idea

• Only increment the image of inj;

• Only decrement the image of Fs.
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Less than or equal

data _<=_ : (i j : Fin n) -> Set where

  Base : (i : Fin (Succ n) -> Fz <= i

  Step : (i j : Fin n) ->

     (i <= j) -> (Fs i <= Fs j)
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Difference

data Diff : (i j : Fin n) -> Set where

  Base : (i : Fin (Succ n) -> Diff i i

  Step : (i j : Fin n) ->

    Diff i j -> Diff (inj i) (Fs j)
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Sort – Base case

sort : (w r : Fin n) -> 
       Diff w r ->
       State n Unit
sort i .i Base = return unit
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sort : (w r : Fin n) -> 
       Diff w r ->
       State n Unit
sort .(inj w) .(Fs r) (Step w r p)
  = read (inj w) >>= \p ->
    case p of
      White -> sort (Fs w) (Fs r) ?
      Red -> 
        swap (inj w) (Fs r) >>
        sort (inj w) (inj r) ?
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Lemmas

• We need to prove a few useful lemmas:

• Diff i j -> Diff (Fs i) (Fs j)

• Diff i j -> Diff (inj i) (inj j)

• Actually, we need to choose

• Diff : Nat -> (i j : Fin n) -> Set
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Verification
the easy part
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Correctness Theorem

(h : Buckets n) (w r : Fin n)

(p : Diff w r)

(forall i -> i < w -> h ! i == White) ->

(forall i -> r < i -> h ! i == Red) ->

let h’ = exec (sort w r p) h

in Sigma (Fin n) (\m ->

  forall i -> i < m -> h’ ! i == White

  /\ forall i -> m < i -> h’ ! i == Red)
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Proof sketch

• Proof proceeds by induction on Diff

• Distinguish three cases:

• Base case (trivial);

• No swap happens (not too hard);

• Swap happens (a bit trickier).

• In the latter two cases, we establish the 
invariant holds and make a recursive call.
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Conclusions

• It is possible to reason about “impure” 
functions using Agda;

• It is not entirely trivial.

• A simple algorithm leads to simple proofs.

29Monday, 14 September 2009


