The Problem o]P the
/Du)'c\\ No}iono\\ ﬂas

Wouter Swierstra
AIM X




_nwere IS o row o )Duc\?e)’s num\oerecl rom | Yo
n. L} is given H’\{;’: i

o eo\c\'\ ‘Duc\?e;' con)'o\ins one )oe):o)o\e
° eo\c‘h )oeHD\e s eiH‘\er recl, oo\'\i)'e, or )D\ue.

A mini-computer is \acecl in {Font o H‘sis row
OF )Duc\?e)’s )oancl }\o\s );'o be Frogrammeﬁ n suc\n

a wo )"ho} it will rearrange <|P necessar ) H\e
N 9 N
)oe)::):v\es n H’\e order o«‘? H’\e /Du)’c\'\ no\;'iono\\

(o

A Discipline of Programming, E.WV. Dijkstra

Monday, 14 September 2009



Specification

® The mini-computer supports two
commands:

® swap (i,j) exchanges the pebbles in buckets
numberediandjfor | <ij<n;

® read (i) returns the colour of the pebble in
bucket numberifor | <i <n.

® Solution should use one pass only and
constant memory.

Monday, 14 September 2009 3



The Problem o]P the
/Du)'c\\ No}iono\\ ﬂas

Wouter Swierstra
AIM X




The Problem o]P Fhe
Du«“”:h No}iono\\ ﬂag

Wouter Swierstra
AIM X




Monday, 14 September 2009 5



Known to
be white

Monday, 14 September 2009 5



Known to Known to
be white be red

Monday, 14 September 2009 5



Known to Known to
be white be red

Monday, 14 September 2009 5



Known to Known to
be white be red

Monday, 14 September 2009 5



Known to Known to
be white be red

Monday, 14 September 2009 5



Known to Known to
be white be red

Monday, 14 September 2009 5



Known to Known to
be white be red

Monday, 14 September 2009 5



Known to Known to
be white be red

Monday, 14 September 2009 5



Known to Known to
be white be red

Monday, 14 September 2009 5



Known to A Known to
be white be red

Monday, 14 September 2009 5



Plan of attack

® |mplement the mini-computer in Agda;

® Write a solution for the Problem of the
Dutch National Flag;

® Verify our solution is correct.

Monday, 14 September 2009 6



Pebbles and Buckets

data Pebble : Set where
Red : Colour
White : Colour

data Buckets : Nat -> Set where
Nil : Buckets Zero
Cons : Pebble -> Buckets n ->

Buckets (Succ n)

Monday, 14 September 2009 7



Indices

data Fin : Nat -> Set where
Fz : Fin (Succ n)
Fs : Fin n -> Fin (Succ n)

Monday, 14 September 2009 8



Indices

data Fin : Nat -> Set where
Fz : Fin (Succ n)
Fs : Fin n -> Fin (Succ n)

Q/

0 I 2 3

Monday, 14 September 2009



The state monad

State : Nat -> Set -> Set
State n a =
Buckets n

-> Pailir a (Buckets n)

Monday, 14 September 2009 9



Reading

read : Fin n -> State Pebble
read 1 bs = (bs ! 1 , bs)
where
(Cons p ) ! Fz = p
(Cons ps) ! (Fs 1) =

ps ! 1

Monday, 14 September 2009 10




Swap

swap : Fin n -> Fin n
-> State n Unit
swap 1 ] =
read i >>= \pi ->
read j >>= \pj ->
write 1 pj >>

write j p1i

Monday, 14 September 2009 11




Back to the problem




An approximation

sort :: Int -> Int -> I0 ()
sort w r =
if w == r then return ()

else case read w of
White -> sort (w + 1) r
Red -> swap w r >>
sort w (r - 1)

Monday, 14 September 2009 13




An approximation




An approximation

sort (w + 1) r

sort w (r - 1)

Monday, 14 September 2009



An approximation

Only terminates
ifw<r

sort (w + 1) r

sort w (r - 1)




Manipulating Fin n




Two problems

® VWe need to increment and decrement
inhabitants of Fin n;

® We need to prove that our algorithm
terminates.

Monday, 14 September 2009 16




Fs : Fin n -> Fin (Succ n)

Monday, 14 September 2009 17




Injection

inj ¢ Fin n -> Fin (Succ n)
inj Fz = Fz

inj (Fs i) = Fs (inj i)

Monday, 14 September 2009 18




Fs or 1nj

/
e
0] I pi 3
' >
inj @ - @ »
o -® - @ »
0 I pi 3

Monday, 14 September 2009



ldea

® Only increment the image of inj;

® Only decrement the image of Fs.

Monday, 14 September 2009 20




Less than or equal

data <= : (1 jJ : Fin n) -> Set where
Base : (1 : Fin (Succ n) -> Fz <= 1
Step ¢ (1 jJ ¢ Fin n) ->

(L <= J) -> (Fs 1 <= Fs 7J)

Monday, 14 September 2009 21




Difference

data Diff : (1 jJ : Fin n) -> Set where
Base : (1 : Fin (Succ n) -> Diff 1 1
Step ¢ (1 jJ ¢ Fin n) ->
Diff 1 j -> Diff (inj 1) (Fs 7J)

Monday, 14 September 2009 22




Sort — Base case

sort : (wr : Fin n) ->
Diff w r ->
State n Unit

sort 1 .1 Base = return unit

Monday, 14 September 2009 23




Sort — Base case




sort : (wr : Fin n) ->
Diff wr ->
State n Unit
sort .(inj w) .(Fs r) (Step w r p)
= read (inj w) >>= \p ->
case p of
White -> sort (Fs w) (Fs r) ?
Red ->
swap (inj w) (Fs r) >>

sort (inj w) (inj r) ?

Monday, 14 September 2009 24




L emmas

® We need to prove a few useful lemmas:
® Diff 1 j -> Diff (Fs 1) (Fs J)
® Diff i j -> Diff (inj i) (inj J)
® Actually, we need to choose

® Diff : Nat -> (1 jJ : Fin n) -> Set

Monday, 14 September 2009 25




Verification

the easy part

Monday, 14 September 2009



Correctness Theorem

(h : Buckets n) (w r : Fin n)

(p : Diff w r)

(forall i -> i <w -> h ! i == White) ->
(forall i -=> r < i -> h ! i == Red) ->
let h' = exec (sort wr p) h

in Sigma (Fin n) (\m ->
forall i -=> 1 < m -> h’ ! 1 == White

/\ forall i -=> m < i -=> h’ ! i1 == Red)

Monday, 14 September 2009 27




Proof sketch

® Proof proceeds by induction on Diff
® Distinguish three cases:

® Base case (trivial);

® No swap happens (not too hard);

® Swap happens (a bit trickier).

® |n the latter two cases, we establish the
invariant holds and make a recursive call.

Monday, 14 September 2009 28




Conclusions

® |t is possible to reason about “impure”
functions using Agda;

® |t is not entirely trivial.

® A simple algorithm leads to simple proofs.

Monday, 14 September 2009 29




