The Problem of the Dutch National \#lag
 Wouter Swierstra AIM X

There is a row of buckets numbered from 1 to n. It is given that:

- each bucket contains one pebble
- each pebble is either red, white, or blue.

A mini-computer is placed in front of this row of buckets and has to be programmed in such a way that it will rearrange (if necessary) the pebbles in the order of the Dutch national flag.
A Discipline of Programming, E.W. Dijkstra

Specification

- The mini-computer supports two commands:
- swap (i, j) exchanges the pebbles in buckets numbered i and j for $I \leq i, j \leq n$;
- read (i) returns the colour of the pebble in bucket number ifor $l \leq i \leq n$.
- Solution should use one pass only and constant memory.

The Problem of the Dutch National \#lag
 Wouter Swierstra AIM X

The Problem of the Duka National Flag

Wouter Swierstra AIM X

\square
 \square

Known to \uparrow be white

\square

Known to
be white \uparrow
$\uparrow \begin{gathered}\text { Known to } \\ \text { be red }\end{gathered}$

\square

Known to
be white \uparrow
$\uparrow \begin{gathered}\text { Known to } \\ \text { be red }\end{gathered}$

Known to
be white \uparrow
Known to
be red

Known to
be white \uparrow
Known to
be red

Known to
be white \uparrow
Known to be red

Known to
be white \uparrow
Known to be red

Known to
be white $\begin{gathered}\text { Known to } \\ \text { be red }\end{gathered}$

Plan of attack

- Implement the mini-computer in Agda;
- Write a solution for the Problem of the Dutch National Flag;
- Verify our solution is correct.

Pebbles and Buckets

data Pebble : Set where
Red : Colour
White : Colour
data Buckets : Nat -> Set where
Nil : Buckets Zero
Cons : Pebble -> Buckets n -> Buckets (Succ n)

Indices

data Fin : Nat -> Set where

$$
\begin{aligned}
& \text { Fz : Fin (Succ } n \text {) } \\
& \text { Fs : Fin } n->\text { Fin (Succ } n \text {) }
\end{aligned}
$$

Indices

data Fin : Nat -> Set where

$$
\begin{aligned}
& \text { Fz : Fin (Succ } n \text {) } \\
& \text { Fs : Fin } n->\text { Fin (Succ } n \text {) }
\end{aligned}
$$

The state monad

State : Nat -> Set -> Set
State n a $=$
Buckets n
-> Pair a (Buckets n)

Reading

read : Fin n -> State Pebble read i bs $=(\mathrm{bs}$! i , bs)
where
(Cons p_{-}) ! $\mathrm{Fz}=\mathrm{p}$
(Cons _ ps) ! (F's i) =
ps ! i

Swap

swap : Fin n -> Fin n
-> State n Unit
swap i j =
read i >>= \pi ->
read j >>= \pj $->$
write i pj >>
write j pi

Back to the problem

An approximation

sort : : Int -> Int -> IO () sort w r =
if w == r then return ()
else case read w of
White -> sort (w + 1) r Red -> swap w r >>
sort w (r - 1)

An approximation

sort : : Int -> Int $A \boldsymbol{T}$
sort w r =

sort w (r - 1)

An approximation

sort : : Int -> Int -> IO ()
sort r w =

$$
\text { if } r==w \text { then return () }
$$

else case read r of

$$
\text { White }->\text { sort }(w+1) r
$$

Red -> swap r w >>
sort w (r - 1)

An approximation

sort : : Int -> Int -> IO () so Only terminates
if r if $\mathbf{w}^{\text {l }} \leq \mathbf{r}^{\text {return }}$ else case read r of

$$
\begin{aligned}
& \text { White }->\operatorname{sort}(w+1) r \\
& \text { Red }->\text { swap } \mathrm{w} \gg \\
& \text { sort w }(r-1)
\end{aligned}
$$

Manipulating Fin n

sort : : Int -> Int -> IO () sort r w =

$$
\begin{aligned}
& \text { if } r==w \text { then return }() \\
& \text { else case read } r \text { of } \\
& \text { White }->\text { sort }(w+1) \text { w } \\
& \text { Red }->\text { swap } r \text { } \ggg> \\
& \text { sort } r(r-1)
\end{aligned}
$$

Two problems

- We need to increment and decrement inhabitants of Fin n ;
- We need to prove that our algorithm terminates.

Fs : Fin n -> Fin (Succ n)

Injection

> inj : Fin n-> Fin (Succ n)
> inj Fz $=$ Fz
> inj $(F s i)=$ Fs (inj i)

Fs or inj

Idea

- Only increment the image of inj;
- Only decrement the image of Fs.

Less than or equal

data__=_ (i j : Fin n) -> Set where
Base : (i : Fin (Suck n) \rightarrow F F <= i Step : (i j : Fin n) ->

$$
(i<=j)->(F s i<=F s j)
$$

Difference

data Diff : (i j : Fin n) -> Set where Base : (i : Fin (Succ n) -> Diff i i Step : (i j : Fin n) -> Diff i j -> Diff (inj i) (F's j)

Sort - Base case

$$
\begin{aligned}
\text { sort : } & (\mathrm{w}: \text { Fin } \mathrm{n}) \quad \rightarrow \\
& \text { Diff w r } \rightarrow>
\end{aligned}
$$

$$
\text { State } n \text { Unit }
$$

$$
\text { sort } i \text {.i Base }=\text { return unit }
$$

Sort - Base case

$$
\begin{aligned}
\text { sort : } & (\mathrm{w} r: \text { Fin } \mathrm{n}) \quad-> \\
& \text { Diff } \mathrm{w} \rightarrow-> \\
& \text { State } \mathrm{n} \text { Unit } \\
\text { sort } i & \text {.i Base }=\text { return unit }
\end{aligned}
$$

sort : (w r : Fin n) -> Diff w r -> State n Unit
sort •(inj w) •(Fs r) (Step w r p)
$=$ read (in w) >>= \p -> case p of

White -> sort (Es w) (Es r) ? Red ->

swap (inj w) (Es r) >> sort (in w) (inj r) ?

Lemmas

- We need to prove a few useful lemmas:
- Diff i j -> Diff (Fs i) (Fs j)
- Diff i j -> Diff (inj i) (inj j)
- Actually, we need to choose
- Diff : Nat -> (i j : Fin n) -> Set

Verification

the easy part

Correctness Theorem

(h : Buckets n) (w r : Fin n)
(p : Diff w r)
(forall i -> i < w -> h ! i == White) ->
(forall i -> $\mathrm{r}<\mathrm{i}->\mathrm{h}$! i == Red) ->
let $h^{\prime}=\operatorname{exec}(s o r t \mathrm{w} ~ \mathrm{p}$) h
in Sigma (Fin n) ($\backslash \mathrm{m}$->
forall i -> i < m -> h' ! i == White / forall i -> m < i -> h' ! i == Red)

Proof sketch

- Proof proceeds by induction on Diff
- Distinguish three cases:
- Base case (trivial);
- No swap happens (not too hard);
- Swap happens (a bit trickier).
- In the latter two cases, we establish the invariant holds and make a recursive call.

Conclusions

- It is possible to reason about "impure" functions using Agda;
- It is not entirely trivial.
- A simple algorithm leads to simple proofs.

