
The Problem of the
Dutch National Flag

Wouter Swierstra
AIM X

1Monday, 14 September 2009

There is a row of buckets numbered from 1 to
n. It is given that:

• each bucket contains one pebble

• each pebble is either red, white, or blue.

A mini-computer is placed in front of this row
of buckets and has to be programmed in such
a way that it will rearrange (if necessary) the
pebbles in the order of the Dutch national
flag.

A Discipline of Programming, E.W. Dijkstra

2Monday, 14 September 2009

Specification

• The mini-computer supports two
commands:

• swap (i,j) exchanges the pebbles in buckets
numbered i and j for 1 ≤ i,j ≤ n;

• read (i) returns the colour of the pebble in
bucket number i for 1 ≤ i ≤ n.

• Solution should use one pass only and
constant memory.

3Monday, 14 September 2009

The Problem of the
Dutch National Flag

Wouter Swierstra
AIM X

4Monday, 14 September 2009

The Problem of the
Dutch National Flag

Wouter Swierstra
AIM XPolish

4Monday, 14 September 2009

5Monday, 14 September 2009

Known to
be white

5Monday, 14 September 2009

Known to
be white

Known to
be red

5Monday, 14 September 2009

Known to
be white

Known to
be red

5Monday, 14 September 2009

Known to
be white

Known to
be red

5Monday, 14 September 2009

Known to
be white

Known to
be red

5Monday, 14 September 2009

Known to
be white

Known to
be red

5Monday, 14 September 2009

Known to
be white

Known to
be red

5Monday, 14 September 2009

Known to
be white

Known to
be red

5Monday, 14 September 2009

Known to
be white

Known to
be red

5Monday, 14 September 2009

Known to
be white

Known to
be red

5Monday, 14 September 2009

Plan of attack

• Implement the mini-computer in Agda;

• Write a solution for the Problem of the
Dutch National Flag;

• Verify our solution is correct.

6Monday, 14 September 2009

Pebbles and Buckets
data Pebble : Set where
 Red : Colour
 White : Colour

data Buckets : Nat -> Set where
 Nil : Buckets Zero
 Cons : Pebble -> Buckets n ->
 Buckets (Succ n)

7Monday, 14 September 2009

Indices

data Fin : Nat -> Set where
 Fz : Fin (Succ n)
 Fs : Fin n -> Fin (Succ n)

8Monday, 14 September 2009

Indices

data Fin : Nat -> Set where
 Fz : Fin (Succ n)
 Fs : Fin n -> Fin (Succ n)

0 1 2 3

Fs

8Monday, 14 September 2009

The state monad

State : Nat -> Set -> Set

State n a =

 Buckets n

 -> Pair a (Buckets n)

9Monday, 14 September 2009

Reading

read : Fin n -> State Pebble

read i bs = (bs ! i , bs)

 where

 (Cons p _) ! Fz = p

 (Cons _ ps) ! (Fs i) =

 ps ! i

10Monday, 14 September 2009

Swap

swap : Fin n -> Fin n
 -> State n Unit
swap i j =
 read i >>= \pi ->
 read j >>= \pj ->
 write i pj >>
 write j pi

11Monday, 14 September 2009

Back to the problem

12Monday, 14 September 2009

An approximation

sort :: Int -> Int -> IO ()
sort w r =
 if w == r then return ()
 else case read w of
 White -> sort (w + 1) r
 Red -> swap w r >>
 sort w (r - 1)

13Monday, 14 September 2009

An approximation

sort :: Int -> Int -> IO ()
sort w r =
 if w == r then return ()
 else case read w of
 White -> sort (w + 1) r
 Red -> swap w r >>
 sort w (r - 1)

Why does th
is

terminate?

13Monday, 14 September 2009

An approximation

sort :: Int -> Int -> IO ()
sort r w =
 if r == w then return ()
 else case read r of
 White ->
 Red -> swap r w >>
 sort r (w - 1)

sort (w + 1) r

sort w (r - 1)

14Monday, 14 September 2009

An approximation

sort :: Int -> Int -> IO ()
sort r w =
 if r == w then return ()
 else case read r of
 White ->
 Red -> swap r w >>
 sort r (w - 1)

sort (w + 1) r

sort w (r - 1)

Only terminates
if w ≤ r

14Monday, 14 September 2009

Manipulating Fin n

sort :: Int -> Int -> IO ()
sort r w =
 if r == w then return ()
 else case read r of
 White -> sort w
 Red -> swap r w >>
 sort r (w - 1)

 (w + 1)

 (r - 1)

15Monday, 14 September 2009

Two problems

• We need to increment and decrement
inhabitants of Fin n ;

• We need to prove that our algorithm
terminates.

16Monday, 14 September 2009

Fs : Fin n -> Fin (Succ n)

17Monday, 14 September 2009

Injection

inj : Fin n -> Fin (Succ n)
inj Fz = Fz
inj (Fs i) = Fs (inj i)

18Monday, 14 September 2009

Fs or inj

0 1 2 3

Fs

0 1 2 3

inj

19Monday, 14 September 2009

Idea

• Only increment the image of inj;

• Only decrement the image of Fs.

20Monday, 14 September 2009

Less than or equal

data _<=_ : (i j : Fin n) -> Set where

 Base : (i : Fin (Succ n) -> Fz <= i

 Step : (i j : Fin n) ->

 (i <= j) -> (Fs i <= Fs j)

21Monday, 14 September 2009

Difference

data Diff : (i j : Fin n) -> Set where

 Base : (i : Fin (Succ n) -> Diff i i

 Step : (i j : Fin n) ->

 Diff i j -> Diff (inj i) (Fs j)

22Monday, 14 September 2009

Sort – Base case

sort : (w r : Fin n) ->
 Diff w r ->
 State n Unit
sort i .i Base = return unit

23Monday, 14 September 2009

Sort – Base case

sort : (w r : Fin n) ->
 Diff w r ->
 State n Unit
sort i .i Base = return unit

23Monday, 14 September 2009

sort : (w r : Fin n) ->
 Diff w r ->
 State n Unit
sort .(inj w) .(Fs r) (Step w r p)
 = read (inj w) >>= \p ->
 case p of
 White -> sort (Fs w) (Fs r) ?
 Red ->
 swap (inj w) (Fs r) >>
 sort (inj w) (inj r) ?

24Monday, 14 September 2009

Lemmas

• We need to prove a few useful lemmas:

• Diff i j -> Diff (Fs i) (Fs j)

• Diff i j -> Diff (inj i) (inj j)

• Actually, we need to choose

• Diff : Nat -> (i j : Fin n) -> Set

25Monday, 14 September 2009

Verification
the easy part

26Monday, 14 September 2009

Correctness Theorem

(h : Buckets n) (w r : Fin n)

(p : Diff w r)

(forall i -> i < w -> h ! i == White) ->

(forall i -> r < i -> h ! i == Red) ->

let h’ = exec (sort w r p) h

in Sigma (Fin n) (\m ->

 forall i -> i < m -> h’ ! i == White

 /\ forall i -> m < i -> h’ ! i == Red)

27Monday, 14 September 2009

Proof sketch

• Proof proceeds by induction on Diff

• Distinguish three cases:

• Base case (trivial);

• No swap happens (not too hard);

• Swap happens (a bit trickier).

• In the latter two cases, we establish the
invariant holds and make a recursive call.

28Monday, 14 September 2009

Conclusions

• It is possible to reason about “impure”
functions using Agda;

• It is not entirely trivial.

• A simple algorithm leads to simple proofs.

29Monday, 14 September 2009

