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Specification

® The mini-computer supports two
commands:

® swap (i,j) exchanges the pebbles in buckets
numberediandjfor | <ij<n;

® read (i) returns the colour of the pebble in
bucket numberifor | <i <n.

® Solution should use one pass only and
constant memory.

Monday, 14 September 2009 3



The Problem o]P the
/Du)'c\\ No}iono\\ ﬂas

Wouter Swierstra
AIM X




The Problem o]P Fhe
Du«“”:h No}iono\\ ﬂag

Wouter Swierstra
AIM X




Monday, 14 September 2009 5



Known to
be white

Monday, 14 September 2009 5



Known to Known to
be white be red

Monday, 14 September 2009 5



Known to Known to
be white be red

Monday, 14 September 2009 5



Known to Known to
be white be red

Monday, 14 September 2009 5



Known to Known to
be white be red

Monday, 14 September 2009 5



Known to Known to
be white be red

Monday, 14 September 2009 5



Known to Known to
be white be red

Monday, 14 September 2009 5



Known to Known to
be white be red

Monday, 14 September 2009 5



Known to Known to
be white be red

Monday, 14 September 2009 5



Known to A Known to
be white be red

Monday, 14 September 2009 5



Plan of attack

® |mplement the mini-computer in Agda;

® Write a solution for the Problem of the
Dutch National Flag;

® Verify our solution is correct.
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Pebbles and Buckets

data Pebble : Set where
Red : Colour
White : Colour

data Buckets : Nat -> Set where
Nil : Buckets Zero
Cons : Pebble -> Buckets n ->

Buckets (Succ n)
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Indices

data Fin : Nat -> Set where
Fz : Fin (Succ n)
Fs : Fin n -> Fin (Succ n)
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The state monad

State : Nat -> Set -> Set
State n a =
Buckets n

-> Pailir a (Buckets n)
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Reading

read : Fin n -> State Pebble
read 1 bs = (bs ! 1 , bs)
where
(Cons p ) ! Fz = p
(Cons ps) ! (Fs 1) =

ps ! 1
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Swap

swap : Fin n -> Fin n
-> State n Unit
swap 1 ] =
read i >>= \pi ->
read j >>= \pj ->
write 1 pj >>

write j p1i
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Back to the problem




An approximation

sort :: Int -> Int -> I0 ()
sort w r =
if w == r then return ()

else case read w of
White -> sort (w + 1) r
Red -> swap w r >>
sort w (r - 1)
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sort (w + 1) r

sort w (r - 1)
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An approximation

Only terminates
ifw<r

sort (w + 1) r

sort w (r - 1)




Manipulating Fin n




Two problems

® VWe need to increment and decrement
inhabitants of Fin n;

® We need to prove that our algorithm
terminates.
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Fs : Fin n -> Fin (Succ n)
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Injection

inj ¢ Fin n -> Fin (Succ n)
inj Fz = Fz

inj (Fs i) = Fs (inj i)
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ldea

® Only increment the image of inj;

® Only decrement the image of Fs.
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Less than or equal

data <= : (1 jJ : Fin n) -> Set where
Base : (1 : Fin (Succ n) -> Fz <= 1
Step ¢ (1 jJ ¢ Fin n) ->

(L <= J) -> (Fs 1 <= Fs 7J)
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Difference

data Diff : (1 jJ : Fin n) -> Set where
Base : (1 : Fin (Succ n) -> Diff 1 1
Step ¢ (1 jJ ¢ Fin n) ->
Diff 1 j -> Diff (inj 1) (Fs 7J)
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Sort — Base case

sort : (wr : Fin n) ->
Diff w r ->
State n Unit

sort 1 .1 Base = return unit
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Sort — Base case




sort : (wr : Fin n) ->
Diff wr ->
State n Unit
sort .(inj w) .(Fs r) (Step w r p)
= read (inj w) >>= \p ->
case p of
White -> sort (Fs w) (Fs r) ?
Red ->
swap (inj w) (Fs r) >>

sort (inj w) (inj r) ?
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L emmas

® We need to prove a few useful lemmas:
® Diff 1 j -> Diff (Fs 1) (Fs J)
® Diff i j -> Diff (inj i) (inj J)
® Actually, we need to choose

® Diff : Nat -> (1 jJ : Fin n) -> Set
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Verification

the easy part
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Correctness Theorem

(h : Buckets n) (w r : Fin n)

(p : Diff w r)

(forall i -> i <w -> h ! i == White) ->
(forall i -=> r < i -> h ! i == Red) ->
let h' = exec (sort wr p) h

in Sigma (Fin n) (\m ->
forall i -=> 1 < m -> h’ ! 1 == White

/\ forall i -=> m < i -=> h’ ! i1 == Red)
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Proof sketch

® Proof proceeds by induction on Diff
® Distinguish three cases:

® Base case (trivial);

® No swap happens (not too hard);

® Swap happens (a bit trickier).

® |n the latter two cases, we establish the
invariant holds and make a recursive call.
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Conclusions

® |t is possible to reason about “impure”
functions using Agda;

® |t is not entirely trivial.

® A simple algorithm leads to simple proofs.
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