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Functional programming 
is great for writing

high assurance software.
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Implement a stack.
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type Stack a = [a]

top :: Stack a -> Maybe a
top [] = Nothing
top (x : xs) = Just x

push :: a -> Stack a -> Stack a
push x xs = x : xs
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Testing

lifoProp :: Int -> Stack Int -> Bool
lifoProp x xs = 
  top (push x xs) == Just x

Stacks> quickCheck lifoProp 
OK, passed 100 tests.
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Equational reasoning

top (push x xs)
= {definition of push }

top (x : xs)
= {definition of top}

Just x
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Proof assistants

Theorem fifo 
  (a : Set) (x : a) (xs : Stack a) :
    top (push x xs) = Some x.
Proof.
  trivial.
Qed.
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The Reasoning Toolkit

• Automatic testing;

• Equational reasoning;

• Proof assistants.
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Implement a queue.
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52 8

front back
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data Cell = Cell Int (IORef Cell)
            | NULL 

type Queue = 
  (IORef Cell, IORef Cell)

enqueue :: Queue -> Int -> IO ()
dequeue :: Queue -> IO (Maybe Int)
empty   :: IO Queue
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How can we show our 
program is correct?
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• Automatic testing;

• Equational reasoning;

• Proof assistants.

The Reasoning Toolkit
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The great divide
Pure & Total

• Easy to reason about.

• Clear semantics

• Tool support for 
verification, testing, and 
debugging.

Impure

• Not so much.

• Hardly.

• ...

•  Very useful!
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Pure specifications
of impure functions.
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Computer memory

type Loc  = Int
type Data = Int
type Heap = Loc -> Data
type Mem  = (Loc, Heap)
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Syntax

data IO a =
    Return a
  | Read Loc (Data -> IO a)
  | Write Loc Data (IO a)
  | New Data (Loc -> IO a)

(a free monad)
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Semantics

type Heap = Loc -> Data
type Mem  = (Loc,Heap)

eval :: IO a -> Mem -> (a,Mem)

(a monad morphism 
from the free monad
to the state monad)
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Semantics - Return

type Heap = Loc -> Data
type Mem  = (Loc,Heap)

eval :: IO a -> Mem -> (a,Mem)
eval (Return x) m = (x,m)
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Semantics - Read

type Heap = Loc -> Data
type Mem  = (Loc,Heap)

eval :: IO a -> Mem -> (a,Mem)
eval (Read l rd) (l,h) = 
  eval (rd (h l)) (l,h)
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Semantics - Write

eval :: IO a -> Mem -> (a,Mem)
eval (Write l d wr) (fresh, heap) = 
  eval wr (fresh,update l d m)

update l d heap =
  \l’ -> if l == l’ then d 
         else heap l’
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Semantics - New

eval :: IO a -> Mem -> (a,Mem)
eval (New d new) (fresh, heap) = 
  eval (new fresh) 
       (fresh + 1, update fresh d m)
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Queues, revisited

• Now, if we choose:

data Data = Cell Int Loc | NULL

• We can QuickCheck our queues...

• ... and even check that queue reversal is 
possible in constant memory.
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Functional specifications

• In my thesis I present functional 
specifications in Haskell for:

• teletype I/O;

• mutable state;

• concurrency (MVars and STM).

• and some machinery to syntactically 
combine specifications.
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But...

• The Haskell specification is not total...

• so it cannot be transcribed to a proof 
assistant;

• and equational reasoning with these 
semantics is not obviously sound.
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Problems

• The Haskell specification deals with one 
fixed type of data;

• and the programmer can access unallocated 
memory;

• the initial memory is “bogus”

type Heap = Loc -> Data

  type Mem  = (Loc,Heap)
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To explain why the functional 
specifications are total, we 
need a richer type structure.

27



Natural numbers

data Nat : Set where
  Zero : Nat
  Succ : Nat -> Nat

plus : Nat -> Nat -> Nat
plus Zero m = m
plus (Succ k) m = Succ (plus k m)
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Lists

data List (a : Set) : Set where
  Nil : List a
  Cons : a -> List a -> List a

head : List a -> a
head Nil = ???
head (Cons x xs) = x
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Vectors

data Vec (a : Set) : Nat -> Set where
  Nil : Vec a Zero
  Cons : a -> Vec a n -> Vec a (Succ n)

head : Vec a (Succ n) -> a
head (Cons x xs) = x
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Memory model

• What types can we store on the heap?

• What is the heap?

• What is a reference?
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Universes

• A universe is a pair of:

•  a type U and 

• a function el : U -> Set
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Universes – example

data U : Set where 
  NAT : U
  PAIR : U -> U -> U
  FUN : U -> U -> U

el : U -> Set
el NAT = Nat
el (PAIR s t) = (el s , el t)
el (FUN s t) = (el s) -> (el t)
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The heap

Shape = List U

data Heap : Shape -> Set where
  Empty : Heap Nil
  Alloc : el u -> Heap us -> 
          Heap (Cons u us) 

For some universe...
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References

data Ref : U -> Shape -> Set where
  Top : Ref u (Cons u us)
  Pop : Ref u us -> Ref u (Cons v us)
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data IO (a : Set) : Shape -> Shape -> Set
  Return : a -> IO a s s
  Write : Ref u s -> el u -> IO a s t
    -> IO a s t
  Read : Ref u s -> (el u -> IO a s t)
    -> IO a s t
  New : el u
    -> (Ref u (Cons u s) 
           -> IO a (Cons u s) t)

 -> IO a s t

Syntax
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Return

eval : IO a s t -> Heap s -> (a, Heap t)

eval (Return x) h = (x,h)
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Write
eval : IO a s t -> Heap s -> (a, Heap t)

eval (Write r x wr) h 

  = eval wr (update r x h)

update : Ref u s -> el u ->

  Heap s -> Heap s

update Top x (Alloc _ h) = Alloc x h

update (Pop r) x (Alloc y h)

  = Alloc y (update r x h)
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Read

eval : IO a s t -> Heap s -> (a, Heap t)

eval (Read r rd) h 

  = eval (rd (lookup r h)) h

lookup : Ref u s -> Heap s -> el u

lookup Top (Alloc x _) = x

lookup (Pop r) (Alloc _ h) = lookup r h
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New

eval : IO a s t -> Heap s -> (a, Heap t)

eval (New x new) h 

  = eval (new Top) (Alloc x h) 
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Programming

• We can now define pure versions of 
functions such as read that program with 
this specification;

• and then use the eval function to reason 
about how such programs behave.

• So we can implement efficient queues, prove 
their correctness, and compile to Haskell.
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Limitations

• Non-modular – you must always carry around 
the entire heap-shape in the types...

• No higher-order store:

 Read : Ref u s -> 

        (el u -> IO a s t) -> IO a s t

• The type of references change when memory 
is allocated.
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Related work

• Hoare Type Theory takes a different 
approach:

• postulate the existence of a Hoare Type;

• add axioms for return and bind;

• and axioms for read, write, new, fix, ...
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Conclusions
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