A functional specification of effects

Wouter Swierstra SET seminar, 12/03/09

Functional programming is great for writing high assurance software.

Implement a stack.

```
type Stack a = [a]
```

```
top :: Stack a -> Maybe a
top [] = Nothing
top (x : xs) = Just x
push :: a -> Stack a -> Stack a
push x xs = x : xs
```

Testing

lifoProp :: Int -> Stack Int -> Bool
lifoProp x xs =
 top (push x xs) == Just x

Stacks> quickCheck lifoProp
OK, passed 100 tests.

Equational reasoning

top (push x xs) $= \{definition of push\}$ top (x : xs) $= \{definition of top\}$ Just x

Proof assistants

Theorem fifo
 (a : Set) (x : a) (xs : Stack a) :
 top (push x xs) = Some x.
Proof.
 trivial.
Qed.

The Reasoning Toolkit

- Automatic testing;
- Equational reasoning;
- Proof assistants.

Implement a queue.

type Queue = (IORef Cell, IORef Cell)

- enqueue :: Queue -> Int -> IO ()
- dequeue :: Queue -> IO (Maybe Int)
- empty :: IO Queue

How can we show our program is correct?

The Reasoning Toolkit

- Automatic testing;
- Equational reasoning;
- Proof assistants.

The great divide

Pure & Total

Impure

- Easy to reason about.
- Clear semantics
- Tool support for verification, testing, and debugging.

- Not so much.
- Hardly.
- ...

• Very useful!

Pure specifications of impure functions.

Computer memory

type Loc = Int
type Data = Int
type Heap = Loc -> Data
type Mem = (Loc, Heap)

Syntax

data IO a =
 Return a
 Read Loc (Data -> IO a)
 Write Loc Data (IO a)
 New Data (Loc -> IO a)

(a free monad)

Semantics

- type Heap = Loc -> Data
- **type** Mem = (Loc, Heap)
- eval :: IO a -> Mem -> (a, Mem)

(a monad morphism from the free monad to the state monad)

Semantics - Return

type Heap = Loc -> Data

type Mem = (Loc, Heap)

eval :: IO a \rightarrow Mem \rightarrow (a, Mem) eval (Return x) m = (x, m)

Semantics - Read

type Heap = Loc -> Data
type Mem = (Loc,Heap)

eval :: IO a -> Mem -> (a, Mem)
eval (Read l rd) (l,h) =
 eval (rd (h l)) (l,h)

Semantics - Write

eval :: IO a -> Mem -> (a,Mem)
eval (Write l d wr) (fresh, heap) =
 eval wr (fresh, update l d m)

```
update 1 d heap =
   \1' -> if 1 == 1' then d
   else heap 1'
```

Semantics - New

eval :: IO a -> Mem -> (a,Mem)
eval (New d new) (fresh, heap) =
 eval (new fresh)
 (fresh + 1, update fresh d m)

Queues, revisited

- Now, if we choose:
 - data Data = Cell Int Loc | NULL
- We can QuickCheck our queues...
- ... and even check that queue reversal is possible in constant memory.

Functional specifications

- In my thesis I present functional specifications in Haskell for:
 - teletype I/O;
 - mutable state;
 - concurrency (MVars and STM).
- and some machinery to syntactically combine specifications.

But...

- The Haskell specification is not **total**...
- so it cannot be transcribed to a proof assistant;
- and equational reasoning with these semantics is not obviously sound.

Problems

- The Haskell specification deals with one fixed type of data;
- and the programmer can access unallocated memory;
- the initial memory is "bogus"

type Heap = Loc -> Data

type Mem = (Loc, Heap)

To explain why the functional specifications are total, we need a richer type structure.

Natural numbers

data Nat : Set where

- Zero : Nat
- Succ : Nat -> Nat
- plus : Nat -> Nat -> Nat
 plus Zero m = m
 plus (Succ k) m = Succ (plus k m)

Lists

```
data List (a : Set) : Set where
Nil : List a
Cons : a -> List a -> List a
head : List a -> a
head Nil = ???
head (Cons x xs) = x
```

Vectors

data Vec (a : Set) : Nat -> Set where Nil : Vec a Zero Cons : a -> Vec a n -> Vec a (Succ n) head : Vec a (Succ n) -> a

head (Cons x xs) = x

Memory model

- What types can we store on the heap?
- What is the heap?
- What is a reference?

Universes

- A universe is a pair of:
 - a type U and
 - a function el : U -> Set

Universes – example

- data U : Set where
 NAT : U
 PAIR : U -> U -> U
 FUN : U -> U -> U
- el : U -> Set
 el NAT = Nat
 el (PAIR s t) = (el s , el t)
 el (FUN s t) = (el s) -> (el t)

The heap

For some universe...

Shape = List U

data Heap : Shape -> Set where
 Empty : Heap Nil
 Alloc : el u -> Heap us ->
 Heap (Cons u us)

References

data Ref : U -> Shape -> Set where
 Top : Ref u (Cons u us)
 Pop : Ref u us -> Ref u (Cons v us)

Syntax

data IO (a : Set) : Shape -> Shape -> Set Return : a -> IO a s s Write : Ref u s -> el u -> IO a s t -> IO a s t Read : Ref u s \rightarrow (el u \rightarrow IO a s t) -> IO a s t New : el u -> (Ref u (Cons u s) \rightarrow IO a (Cons u s) t) -> IO a s t

Return

eval : IO a s t \rightarrow Heap s \rightarrow (a, Heap t) eval (Return x) h = (x,h)

Write

eval : IO a s t -> Heap s -> (a, Heap t) eval (Write r x wr) h

= eval wr (update r x h)

update : Ref u s -> el u -> Heap s -> Heap s update Top x (Alloc _ h) = Alloc x h update (Pop r) x (Alloc y h) = Alloc y (update r x h)

Read

eval : IO a s t -> Heap s -> (a, Heap t)
eval (Read r rd) h
= eval (rd (lookup r h)) h

lookup : Ref u s -> Heap s -> el u
lookup Top (Alloc x _) = x
lookup (Pop r) (Alloc _ h) = lookup r h

New

eval : IO a s t -> Heap s -> (a, Heap t)
eval (New x new) h
= eval (new Top) (Alloc x h)

Programming

- We can now define pure versions of functions such as read that program with this specification;
- and then use the eval function to reason about how such programs behave.
- So we can implement efficient queues, prove their correctness, and compile to Haskell.

Limitations

- Non-modular you must always carry around the entire heap-shape in the types...
- No higher-order store:

Read : Ref u s ->

(el u -> IO a s t) -> IO a s t

• The type of references change when memory is allocated.

Related work

- Hoare Type Theory takes a different approach:
 - postulate the existence of a Hoare Type;
 - add axioms for return and bind;
 - and axioms for read, write, new, fix, ...

Conclusions