
A functional
specification of effects

Wouter Swierstra
SET seminar, 12/03/09

1

Functional programming
is great for writing

high assurance software.

2

Implement a stack.

3

type Stack a = [a]

top :: Stack a -> Maybe a
top [] = Nothing
top (x : xs) = Just x

push :: a -> Stack a -> Stack a
push x xs = x : xs

4

Testing

lifoProp :: Int -> Stack Int -> Bool
lifoProp x xs =
 top (push x xs) == Just x

Stacks> quickCheck lifoProp
OK, passed 100 tests.

5

Equational reasoning

top (push x xs)
= {definition of push }

top (x : xs)
= {definition of top}

Just x

6

Proof assistants

Theorem fifo
 (a : Set) (x : a) (xs : Stack a) :
 top (push x xs) = Some x.
Proof.
 trivial.
Qed.

7

The Reasoning Toolkit

• Automatic testing;

• Equational reasoning;

• Proof assistants.

8

Implement a queue.

9

52 8

front back

10

data Cell = Cell Int (IORef Cell)
 | NULL

type Queue =
 (IORef Cell, IORef Cell)

enqueue :: Queue -> Int -> IO ()
dequeue :: Queue -> IO (Maybe Int)
empty :: IO Queue

11

How can we show our
program is correct?

12

• Automatic testing;

• Equational reasoning;

• Proof assistants.

The Reasoning Toolkit

13

The great divide
Pure & Total

• Easy to reason about.

• Clear semantics

• Tool support for
verification, testing, and
debugging.

Impure

• Not so much.

• Hardly.

• ...

• Very useful!

14

Pure specifications
of impure functions.

15

Computer memory

type Loc = Int
type Data = Int
type Heap = Loc -> Data
type Mem = (Loc, Heap)

16

Syntax

data IO a =
 Return a
 | Read Loc (Data -> IO a)
 | Write Loc Data (IO a)
 | New Data (Loc -> IO a)

(a free monad)

17

Semantics

type Heap = Loc -> Data
type Mem = (Loc,Heap)

eval :: IO a -> Mem -> (a,Mem)

(a monad morphism
from the free monad
to the state monad)

18

Semantics - Return

type Heap = Loc -> Data
type Mem = (Loc,Heap)

eval :: IO a -> Mem -> (a,Mem)
eval (Return x) m = (x,m)

19

Semantics - Read

type Heap = Loc -> Data
type Mem = (Loc,Heap)

eval :: IO a -> Mem -> (a,Mem)
eval (Read l rd) (l,h) =
 eval (rd (h l)) (l,h)

20

Semantics - Write

eval :: IO a -> Mem -> (a,Mem)
eval (Write l d wr) (fresh, heap) =
 eval wr (fresh,update l d m)

update l d heap =
 \l’ -> if l == l’ then d
 else heap l’

21

Semantics - New

eval :: IO a -> Mem -> (a,Mem)
eval (New d new) (fresh, heap) =
 eval (new fresh)
 (fresh + 1, update fresh d m)

22

Queues, revisited

• Now, if we choose:

data Data = Cell Int Loc | NULL

• We can QuickCheck our queues...

• ... and even check that queue reversal is
possible in constant memory.

23

Functional specifications

• In my thesis I present functional
specifications in Haskell for:

• teletype I/O;

• mutable state;

• concurrency (MVars and STM).

• and some machinery to syntactically
combine specifications.

24

But...

• The Haskell specification is not total...

• so it cannot be transcribed to a proof
assistant;

• and equational reasoning with these
semantics is not obviously sound.

25

Problems

• The Haskell specification deals with one
fixed type of data;

• and the programmer can access unallocated
memory;

• the initial memory is “bogus”

type Heap = Loc -> Data

 type Mem = (Loc,Heap)

26

To explain why the functional
specifications are total, we
need a richer type structure.

27

Natural numbers

data Nat : Set where
 Zero : Nat
 Succ : Nat -> Nat

plus : Nat -> Nat -> Nat
plus Zero m = m
plus (Succ k) m = Succ (plus k m)

28

Lists

data List (a : Set) : Set where
 Nil : List a
 Cons : a -> List a -> List a

head : List a -> a
head Nil = ???
head (Cons x xs) = x

29

Vectors

data Vec (a : Set) : Nat -> Set where
 Nil : Vec a Zero
 Cons : a -> Vec a n -> Vec a (Succ n)

head : Vec a (Succ n) -> a
head (Cons x xs) = x

30

Memory model

• What types can we store on the heap?

• What is the heap?

• What is a reference?

31

Universes

• A universe is a pair of:

• a type U and

• a function el : U -> Set

32

Universes – example

data U : Set where
 NAT : U
 PAIR : U -> U -> U
 FUN : U -> U -> U

el : U -> Set
el NAT = Nat
el (PAIR s t) = (el s , el t)
el (FUN s t) = (el s) -> (el t)

33

The heap

Shape = List U

data Heap : Shape -> Set where
 Empty : Heap Nil
 Alloc : el u -> Heap us ->
 Heap (Cons u us)

For some universe...

34

References

data Ref : U -> Shape -> Set where
 Top : Ref u (Cons u us)
 Pop : Ref u us -> Ref u (Cons v us)

35

data IO (a : Set) : Shape -> Shape -> Set
 Return : a -> IO a s s
 Write : Ref u s -> el u -> IO a s t
 -> IO a s t
 Read : Ref u s -> (el u -> IO a s t)
 -> IO a s t
 New : el u
 -> (Ref u (Cons u s)
 -> IO a (Cons u s) t)

 -> IO a s t

Syntax

36

Return

eval : IO a s t -> Heap s -> (a, Heap t)

eval (Return x) h = (x,h)

37

Write
eval : IO a s t -> Heap s -> (a, Heap t)

eval (Write r x wr) h

 = eval wr (update r x h)

update : Ref u s -> el u ->

 Heap s -> Heap s

update Top x (Alloc _ h) = Alloc x h

update (Pop r) x (Alloc y h)

 = Alloc y (update r x h)

38

Read

eval : IO a s t -> Heap s -> (a, Heap t)

eval (Read r rd) h

 = eval (rd (lookup r h)) h

lookup : Ref u s -> Heap s -> el u

lookup Top (Alloc x _) = x

lookup (Pop r) (Alloc _ h) = lookup r h

39

New

eval : IO a s t -> Heap s -> (a, Heap t)

eval (New x new) h

 = eval (new Top) (Alloc x h)

40

Programming

• We can now define pure versions of
functions such as read that program with
this specification;

• and then use the eval function to reason
about how such programs behave.

• So we can implement efficient queues, prove
their correctness, and compile to Haskell.

41

Limitations

• Non-modular – you must always carry around
the entire heap-shape in the types...

• No higher-order store:

 Read : Ref u s ->

 (el u -> IO a s t) -> IO a s t

• The type of references change when memory
is allocated.

42

Related work

• Hoare Type Theory takes a different
approach:

• postulate the existence of a Hoare Type;

• add axioms for return and bind;

• and axioms for read, write, new, fix, ...

43

Conclusions

44

