A functional specification of effects
 Wouter Swierstra SET seminar, I2/03/09

Functional programming is great for writing high assurance software.

Implement a stack.

type Stack a = [a]
top : : Stack a -> Maybe a
top [] = Nothing
top (x : xs) = Just x
push : : a -> Stack a -> Stack a push x xs $=\mathrm{x}$: xs

Testing

lifoProp : : Int -> Stack Int -> Bool lifoProp x xs = top (push x xs) == Just x

Stacks> quickCheck lifoProp OK, passed 100 tests.

Equational reasoning

$$
\begin{aligned}
& \text { top }(p u s h x x s) \\
= & \{\text { definition of push }\} \\
= & \text { top }(x: x s) \\
= & \{\text { definition of top }\} \\
& \text { Just } x
\end{aligned}
$$

Proof assistants

Theorem fifo
(a) Set) (x : a) (xs : Stack a) : top (push x xs) $=$ Some x.
Proof.
trivial.
Qed.

The Reasoning Toolkit

- Automatic testing;
- Equational reasoning;
- Proof assistants.

Implement a queue.

data Cell = Cell Int (IORef Cell) NULL
type Queue =
(IORef Cell, IORef Cell)
enqueue : : Queue -> Int -> IO () dequeue :: Queue -> IO (Maybe Int)
empty : : IO Queue

How can we show our program is correct?

The Reasoning Toolkit

- Automatic testing;
- Equational reasoning;
- Proof assistants.

The great divide

Pure \& Total

- Easy to reason about.
- Clear semantics
- Tool support for verification, testing, and debugging.

Impure

- Not so much.
- Hardly.
- ...
- Very useful!

Pure specifications of impure functions.

Computer memory

type Loc = Int
type Data = Int
type Heap $=$ Loc -> Data
type Mem $=$ (Loc, Heap)

Syntax

data IO a =
Return a
Read Loc (Data -> IO a)
Write Loc Data (IO a)
New Data (Loc -> IO a)
(a free monad)

Semantics

$$
\begin{aligned}
& \text { type Heap }=\text { Loc }->\text { Data } \\
& \text { type Mem }=(\text { Loc, Heap }) \\
& \text { eval : : IO a } \rightarrow \text { Mem } \rightarrow(a, \text { Mem })
\end{aligned}
$$

(a monad morphism from the free monad to the state monad)

Semantics - Return

type Heap $=$ Loc $->$ Data type Mem $=$ (Loc, Heap)

```
eval :: IO a -> Mem -> (a,Mem)
eval (Return x) m = (x,m)
```


Semantics - Read

type Heap $=$ Loc $->$ Data type Mem $=$ (Loc, Heap)

$$
\begin{aligned}
& \text { eval : : IO a }->\text { Mem }->(a, \text { Mem }) \\
& \text { eval (Read l rd) }(l, h)= \\
& \quad \text { eval }(r d \quad(h l))(l, h)
\end{aligned}
$$

Semantics - Write

eval : : IO a $->$ Mem $->$ (a,Mem) eval (Write l d wr) (fresh, heap) = eval wr (fresh,update 1 d m)
update 1 d heap =
\l' -> if l == l' then d else heap l'

Semantics - New

```
eval :: IO a -> Mem -> (a,Mem)
eval (New d new) (fresh, heap) =
    eval (new fresh)
    (fresh + 1, update fresh d m)
```


Queues, revisited

- Now, if we choose:
data Data $=$ Cell Int Loc | NULL
- We can QuickCheck our queues...
- ... and even check that queue reversal is possible in constant memory.

Functional specifications

- In my thesis I present functional specifications in Haskell for:
- teletype I/O;
- mutable state;
- concurrency (MVars and STM).
- and some machinery to syntactically combine specifications.

But...

- The Haskell specification is not total...
- so it cannot be transcribed to a proof assistant;
- and equational reasoning with these semantics is not obviously sound.

Problems

- The Haskell specification deals with one fixed type of data;
- and the programmer can access unallocated memory;
- the initial memory is "bogus"
type Heap = Loc -> Data
type Mem = (Loc,Heap)

To explain why the functional specifications are total, we need a richer type structure.

Natural numbers

```
data Nat : Set where
    Zero : Nat
    Succ : Nat -> Nat
plus : Nat -> Nat -> Nat
plus Zero m = m
plus (Succ k) m = Succ (plus k m)
```


Lists

data List (a : Set) : Set where Nil : List a
 Cons : a -> List a -> List a

head : List a -> a
head Nil = ???
head (Cons x xs) $=\mathrm{x}$

Vectors

data Vec (a : Set) : Nat -> Set where Nil : Vec a Zero Cons : a -> Vec a n -> Vec a (Succ n)
head : Vec a (Succ n) -> a
head (Cons $\mathrm{x} x \mathrm{x}$) $=\mathrm{x}$

Memory model

- What types can we store on the heap?
- What is the heap?
- What is a reference?

Universes

- A universe is a pair of:
- a type U and
- a function el : U -> Set

Universes - example

```
data U : Set where
    NAT : U
    PAIR : U -> U -> U
    FUN : U -> U -> U
el : U -> Set
el NAT = Nat
el (PAIR s t) = (el s , el t)
el (FUN s t) = (el s) -> (el t)
```


The heap

For some universe...

```
Shape = List U
data Heap : Shape -> Set where
    Empty : Heap Nil
    Alloc : el u -> Heap us ->
        Heap (Cons u us)
```


References

data Ref : U -> Shape -> Set where Top : Ref u (Cons u us)
Pop : Ref u us -> Ref u (Cons v us)

Syntax

```
data IO (a : Set) : Shape -> Shape -> Set
    Return : a -> IO a s s
    Write : Ref u s -> el u -> IO a s t
        -> IO a s t
    Read : Ref u s -> (el u -> IO a s t)
        -> IO a s t
    New : el u
\[
\begin{aligned}
&->(\text { Ref } u \text { (Cons u s) } \\
&-> \text { IO a (Cons u s) t) } \\
&->\text { IO } a \operatorname{s} t
\end{aligned}
\]
```


Return

eval : IO a $s t \rightarrow$ Heap $s \rightarrow(a, H e a p t)$ eval (Return $x) h=(x, h)$

Write

```
eval : IO a s t -> Heap s -> (a, Heap t)
eval (Write r x wr) h
    = eval wr (update r x h)
update : Ref u s -> el u ->
    Heap s -> Heap s
update Top x (Alloc _ h) = Alloc x h
update (Pop r) x (Alloc y h)
    = Alloc y (update r x h)
```


Read

$$
\begin{aligned}
& \text { eval : IO a s t -> Heap s -> (a, Heap t) } \\
& \text { eval (Read r rd) h } \\
& \text { = eval (rd (lookup r h)) h } \\
& \text { lookup : Ref u s -> Heap s -> el u } \\
& \text { lookup Top (Alloc x _) = x } \\
& \text { lookup (Pop r) (Alloc _ h) = lookup r h }
\end{aligned}
$$

New

```
eval : IO a s t -> Heap s -> (a, Heap t)
eval (New x new) h
    = eval (new Top) (Alloc x h)
```


Programming

- We can now define pure versions of functions such as read that program with this specification;
- and then use the eval function to reason about how such programs behave.
- So we can implement efficient queues, prove their correctness, and compile to Haskell.

Limitations

- Non-modular - you must always carry around the entire heap-shape in the types...
- No higher-order store:

$$
\begin{aligned}
\text { Read : } & \text { Ref } u s \rightarrow \\
& (e l u->I O \text { a } s t) \rightarrow I O \text { a } s t
\end{aligned}
$$

- The type of references change when memory is allocated.

Related work

- Hoare Type Theory takes a different approach:
- postulate the existence of a Hoare Type;
- add axioms for return and bind;
- and axioms for read, write, new, fix, ...

Conclusions

