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Goals

• What is a DSEL?

• Why use Haskell?

• Show some techniques, tricks & terminology.

• Study examples.
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What is a domain-
specific language?

Wikipedia defines a DSL:

a programming language or specification 
language dedicated to a particular problem 
domain, a particular problem representation 
technique, and/or a particular solution technique
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Example:
The dot language for describing 
directed graphs:

  digraph untitled 
    {
    a -> b;
    b -> c;
    a -> c;
    }

a

b

c
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DSL

• A domain specific language is a language 
designed to solve one problem and to solve 
it well.

• A DSL is not a general purpose 
programming language.

• Some DSLs are designed to be used by 
people who are not programmers.
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Designing a DSL
Writing a compiler, even for a simple DSL is a 
lot of work.

• lexer;

• parser;

• pretty printer;

• “code generation”;

• type checking...
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And what if your first 
design is wrong?
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Domain specific 
embedded languages

• Don’t invest implementation effort in a 
compiler until you are sure about what you 
and your users want.

• Start by embedding your DSL in a general 
purpose programming language.

• Rapid language prototyping.
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NSWC Experiment
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Aegis weapons system
10



Geo-server

• Central questions:

• When is a point in a region?

• How can we describe complex regions?
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Monolithic 
solution

public bool isInRange
 (r1 : float, r2 : float,
  x : float, y : float) {
  sqrt(x^2 + y^2) >= r1 &&
  sqrt(x^2 + y^2) <= r2 &&
  ... sin φ ... 
}

r2

r1
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Haskell solution

• There are two types of data involved:

• Points:

    type Point = (Float, Float)

• Regions:

type Region = Point -> Bool

• Once we know the types, the rest is “easy.”
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Design goal

• We need to find:

• the smallest possible primitive 
combinators to describe simple regions;

• and region combinators to build “bigger” 
regions from smaller ones.
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Primitive regions - I

type Width  = Float
type Height = Float

rect :: Width -> 
  -> Height 
  -> Region
rect w h (x,y) = 
  x <= w && y <= h w

h

Rectangles centered at the origin:
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Primitive regions - II

type Radius = Float

circle :: Radius -> Region
circle r (x,y) = 
  let d = sqrt (x^2 + y^2)
  in d <= r 

r

Circles centered at the origin:
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Shifting

r
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Shifting

r

dy

dx
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Shifting

r
dy

dx
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Shifting

r
dy

dx

shift :: (Float, Float) 

  -> Region 

  -> Region

shift (dx,dy) r = 

  \(x,y) ->  

    r (x - dx, y - dy)
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Intersection
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Intersection

r1
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Intersection

r1

r2
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Intersection

r1

r2
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Intersection

(/\) :: Region 

  -> Region

  -> Region

r1 /\ r2 = \p ->

   r1 p && r2 p

r1

r2
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Union
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Union

r1
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Union

r1

r2
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Union

r1

r2
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Union

(\/) :: Region 

  -> Region

  -> Region

r1 \/ r2 = \p ->

   r1 p || r2 p

r1

r2
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r

Negation
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r

Negation
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r

Negation
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outside :: 

  Region -> Region

outside r = 

  \p -> not (r p)

r

Negation
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Using combinators -
annulus

r2

r1
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Using combinators -
annulus

  annulus r1 r2 = 
    outside (circle r1)
    /\ circle r2

r2

r1
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NSWC

• The NSWC compared different the 
development time and lines of code 
necessary to write a geo-server in different 
languages.

• Haskell did really well.
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Financial crisis
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Financial derivatives
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Financial derivatives

swaps

options

spreads

straddles

floors
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Financial derivatives

swaps

futures caps

swaptions
options

spreads

straddles

floors
captions

European options

American options

24



Financial contracts

• Would you rather:

• Get 100 SEK now and give me 105 SEK in 
one month;

• choose in one month to:

• either pay me 700 SEK but receive 710 
SEK in one month;

• or receive 1000 SEK but pay me 1200 
SEK in one year’s time.
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• The zero-coupon discount bond:
  zcb :: Date -> Double -> Currency -> Contract

A contract zcb t x k means “receive x units 
of currency k on the date t”

• Should this be a primitive?

Simple example
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Even simpler examples

• The empty contract:

  empty :: Contract

• The receive one unit now:

  one :: Currency -> Contract
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Combinators

• Combine two contracts:

  and :: Contract -> Contract -> Contract

• Choose between contracts:

  or :: Contract -> Contract -> Contract

• Reverse a contract:

  give :: Contract -> Contract
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Problems

• How do we deal with

• dates?

• currency fluctuations?

• interest rates?

• weather forecasts?

• ....
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Observables

• We need to describe the set of values that 
are not known statically, but influence the 
value of a contract.

• Examples:

• today :: Obs Date

• sekTogbp :: Obs Double

• mmRainInCorfu :: Obs Int
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Observables

• I’m going to assume a fixed set of 
observables, implemented by someone else:

• but present functions to manipulate them;

• and functions to use them to construct 
contracts.
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Observable 
combinators

• Constants:

  constant :: a -> Obs a

• Choose between contracts:

  lift :: (a -> b) -> Obs a -> Obs b

  lift2 :: (a -> b -> c) -> 

    Obs a -> Obs b -> Obs c
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Example:

• More than three centimeters of rain in Corfu:

lift2 (>) rainInCorfu (const 30)

• This gives a value of type Obs Bool
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Using observables

• Scaling contracts:

  scale :: Obs Double

    -> Contract -> Contract

• Conditional contracts:

  when :: Obs Bool

    -> Contract -> Contract

• And several others...
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Zero-coupon discount 
bonds revisited

• We can now describe the zcb using these 
combinators:
at :: Date -> Obs Bool

at t = lift2 (==) date (const t)

zcb :: Date -> Double -> Currency -> Contract

zcb t x c = at t (scale (const x) (one c))

35



Review

• So far we have:

• a language for describing contracts;

• separated static structure from the 
observable values;

• seen some simple examples.

• But how do we implement these functions?
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Implementing contracts

data Contract = 

    Zero

  | One

  | Give Contract

  | And Contract Contract

  | Scale (Obs Double) Contract

  | ....
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AST

• We have a small language for describing 
financial contracts.

• The design of the contract language focussed 
on finding the right types.

• We can’t do anything with contracts yet – 
we have only written down an abstract 
syntax tree.
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Valuation

• Banks have complex stochastic financial 
models to try and predict the market’s 
behaviour.

• To estimate a contract’s value, we need to 
compile the contract AST to these models.

• Doing so requires lots of help from domain 
experts – but there’s no more language 
design.
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Shallow and deep

• DSELs come in two flavours:

• the values of the DSL coincide with those 
of the host language (shallow embedding);

• the values of the DSL have an explicit 
representation in the host language (deep 
embedding).
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Deeply embedded 
regions

data Regions = 

    Circle Float

  | Rectangle Float Float

  | And Region Region

  | ...

• Pro: add different semantics (like generating 
images, etc.)

• Con: more work/syntactic overhead.
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Lessons

• Haskell’s fancy features help:

• higher order functions;

• polymorphism;

• algebraic data types;

• type classes;

• inobtrusive syntax.

42



Lots of DSELs

• Images;

• Music;

• Logic programming;

• Parsing;

• Pretty printers

• Data base queries;

• Hardware design;

• Automatic testing;

• Animation;

• Diagrams;

• Tree traversals;

• Web formlets....
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Really wacky ones...
main = runBASIC $ do

  10 LET x =: 1

  20 PRINT “Hello Basic world!”

  30 LET X =: X + 1

  40 IF X <> 11 THEN 20

  50 END
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Further reading

• Haskell vs. Ada vs. Awk vs. ...  An Experiment in 
Software Prototyping Productivity. Paul Hudak 
and Mark Jones.

• Composing contracts: an adventure in financial 
engineering. Simon Peyton Jones, Jean Marc 
Eber, and Julian Seward.

• The Fun of Programming. Edited by Jeremy 
Gibbons and Oege de Moor.
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