
Domain specific
embedded languages

Wouter Swierstra

1

Goals

• What is a DSEL?

• Why use Haskell?

• Show some techniques, tricks & terminology.

• Study examples.

2

What is a domain-
specific language?

Wikipedia defines a DSL:

a programming language or specification
language dedicated to a particular problem
domain, a particular problem representation
technique, and/or a particular solution technique

3

Example:
The dot language for describing
directed graphs:

 digraph untitled
 {
 a -> b;
 b -> c;
 a -> c;
 }

a

b

c

4

DSL

• A domain specific language is a language
designed to solve one problem and to solve
it well.

• A DSL is not a general purpose
programming language.

• Some DSLs are designed to be used by
people who are not programmers.

5

Designing a DSL
Writing a compiler, even for a simple DSL is a
lot of work.

• lexer;

• parser;

• pretty printer;

• “code generation”;

• type checking...

6

And what if your first
design is wrong?

7

Domain specific
embedded languages

• Don’t invest implementation effort in a
compiler until you are sure about what you
and your users want.

• Start by embedding your DSL in a general
purpose programming language.

• Rapid language prototyping.

8

NSWC Experiment
9

Aegis weapons system
10

Geo-server

• Central questions:

• When is a point in a region?

• How can we describe complex regions?

11

Monolithic
solution

public bool isInRange
 (r1 : float, r2 : float,
 x : float, y : float) {
 sqrt(x^2 + y^2) >= r1 &&
 sqrt(x^2 + y^2) <= r2 &&
 ... sin φ ...
}

r2

r1

12

Haskell solution

• There are two types of data involved:

• Points:

 type Point = (Float, Float)

• Regions:

type Region = Point -> Bool

• Once we know the types, the rest is “easy.”

13

Design goal

• We need to find:

• the smallest possible primitive
combinators to describe simple regions;

• and region combinators to build “bigger”
regions from smaller ones.

14

Primitive regions - I

type Width = Float
type Height = Float

rect :: Width ->
 -> Height
 -> Region
rect w h (x,y) =
 x <= w && y <= h w

h

Rectangles centered at the origin:

15

Primitive regions - II

type Radius = Float

circle :: Radius -> Region
circle r (x,y) =
 let d = sqrt (x^2 + y^2)
 in d <= r

r

Circles centered at the origin:

16

Shifting

r

17

Shifting

r

dy

dx

17

Shifting

r
dy

dx

17

Shifting

r
dy

dx

shift :: (Float, Float)

 -> Region

 -> Region

shift (dx,dy) r =

 \(x,y) ->

 r (x - dx, y - dy)

17

Intersection

18

Intersection

r1

18

Intersection

r1

r2

18

Intersection

r1

r2

18

Intersection

(/\) :: Region

 -> Region

 -> Region

r1 /\ r2 = \p ->

 r1 p && r2 p

r1

r2

18

Union

19

Union

r1

19

Union

r1

r2

19

Union

r1

r2

19

Union

(\/) :: Region

 -> Region

 -> Region

r1 \/ r2 = \p ->

 r1 p || r2 p

r1

r2

19

r

Negation

20

r

Negation

20

r

Negation

20

outside ::

 Region -> Region

outside r =

 \p -> not (r p)

r

Negation

20

Using combinators -
annulus

r2

r1

21

Using combinators -
annulus

 annulus r1 r2 =
 outside (circle r1)
 /\ circle r2

r2

r1

21

NSWC

• The NSWC compared different the
development time and lines of code
necessary to write a geo-server in different
languages.

• Haskell did really well.

22

Financial crisis
23

Financial derivatives

24

Financial derivatives

swaps

options

spreads

straddles

floors

24

Financial derivatives

swaps

futures caps

swaptions
options

spreads

straddles

floors
captions

European options

American options

24

Financial contracts

• Would you rather:

• Get 100 SEK now and give me 105 SEK in
one month;

• choose in one month to:

• either pay me 700 SEK but receive 710
SEK in one month;

• or receive 1000 SEK but pay me 1200
SEK in one year’s time.

25

• The zero-coupon discount bond:
 zcb :: Date -> Double -> Currency -> Contract

A contract zcb t x k means “receive x units
of currency k on the date t”

• Should this be a primitive?

Simple example

26

Even simpler examples

• The empty contract:

 empty :: Contract

• The receive one unit now:

 one :: Currency -> Contract

27

Combinators

• Combine two contracts:

 and :: Contract -> Contract -> Contract

• Choose between contracts:

 or :: Contract -> Contract -> Contract

• Reverse a contract:

 give :: Contract -> Contract

28

Problems

• How do we deal with

• dates?

• currency fluctuations?

• interest rates?

• weather forecasts?

•

29

Observables

• We need to describe the set of values that
are not known statically, but influence the
value of a contract.

• Examples:

• today :: Obs Date

• sekTogbp :: Obs Double

• mmRainInCorfu :: Obs Int

30

Observables

• I’m going to assume a fixed set of
observables, implemented by someone else:

• but present functions to manipulate them;

• and functions to use them to construct
contracts.

31

Observable
combinators

• Constants:

 constant :: a -> Obs a

• Choose between contracts:

 lift :: (a -> b) -> Obs a -> Obs b

 lift2 :: (a -> b -> c) ->

 Obs a -> Obs b -> Obs c

32

Example:

• More than three centimeters of rain in Corfu:

lift2 (>) rainInCorfu (const 30)

• This gives a value of type Obs Bool

33

Using observables

• Scaling contracts:

 scale :: Obs Double

 -> Contract -> Contract

• Conditional contracts:

 when :: Obs Bool

 -> Contract -> Contract

• And several others...

34

Zero-coupon discount
bonds revisited

• We can now describe the zcb using these
combinators:
at :: Date -> Obs Bool

at t = lift2 (==) date (const t)

zcb :: Date -> Double -> Currency -> Contract

zcb t x c = at t (scale (const x) (one c))

35

Review

• So far we have:

• a language for describing contracts;

• separated static structure from the
observable values;

• seen some simple examples.

• But how do we implement these functions?

36

Implementing contracts

data Contract =

 Zero

 | One

 | Give Contract

 | And Contract Contract

 | Scale (Obs Double) Contract

 |

37

AST

• We have a small language for describing
financial contracts.

• The design of the contract language focussed
on finding the right types.

• We can’t do anything with contracts yet –
we have only written down an abstract
syntax tree.

38

Valuation

• Banks have complex stochastic financial
models to try and predict the market’s
behaviour.

• To estimate a contract’s value, we need to
compile the contract AST to these models.

• Doing so requires lots of help from domain
experts – but there’s no more language
design.

39

Shallow and deep

• DSELs come in two flavours:

• the values of the DSL coincide with those
of the host language (shallow embedding);

• the values of the DSL have an explicit
representation in the host language (deep
embedding).

40

Deeply embedded
regions

data Regions =

 Circle Float

 | Rectangle Float Float

 | And Region Region

 | ...

• Pro: add different semantics (like generating
images, etc.)

• Con: more work/syntactic overhead.

41

Lessons

• Haskell’s fancy features help:

• higher order functions;

• polymorphism;

• algebraic data types;

• type classes;

• inobtrusive syntax.

42

Lots of DSELs

• Images;

• Music;

• Logic programming;

• Parsing;

• Pretty printers

• Data base queries;

• Hardware design;

• Automatic testing;

• Animation;

• Diagrams;

• Tree traversals;

• Web formlets....

43

Really wacky ones...
main = runBASIC $ do

 10 LET x =: 1

 20 PRINT “Hello Basic world!”

 30 LET X =: X + 1

 40 IF X <> 11 THEN 20

 50 END

44

Further reading

• Haskell vs. Ada vs. Awk vs. ... An Experiment in
Software Prototyping Productivity. Paul Hudak
and Mark Jones.

• Composing contracts: an adventure in financial
engineering. Simon Peyton Jones, Jean Marc
Eber, and Julian Seward.

• The Fun of Programming. Edited by Jeremy
Gibbons and Oege de Moor.

45

