## The Problem of the Dutch National Flag

Wouter Swierstra
IFIPWG 2.I \#66

## Jeremy's Problem

## The State Monad

State sa := s -> a * s
return : a -> State sa
(>>=) : State sa
-> (a -> State s b)
-> State s b

```
relabel : State nat (Tree nat)
relabel t = match t with
    | Leaf _ =>
        get >>= fun c =>
        put (c + 1) >>=
        return (Leaf c)
    | Node l r =>
        relabel l >>= fun l' =>
        relabel r >>= fun r' =>
    return (Node l' r')
    end
```


## Idea:

Decorate the state monad with pre- and postconditions.

## Pre- and postconditions

Define the following types:

$$
\begin{aligned}
& \text { Pre }:=s->\text { Prop } \\
& \text { Post (a : Set) }:=s->\text { a }->\mathrm{s}->\text { Prop }
\end{aligned}
$$

## The Hoare State Type

Define the following type:
HoareState s P a Q :=

$$
\begin{aligned}
& \{i: s \mid P i\}-> \\
& \{(x, f): a * s \mid Q i x f\}
\end{aligned}
$$

## Plan

- Define return and bind with a fancy HoareState type.
- Choose a suitable type for our relabelling function.


## Relabelling revisited

The type of relabel becomes:
HoareState

$$
\begin{aligned}
& \text { (fun } i=>\text { True) } \\
& \text { (Tree nat) } \\
& \text { (fun } i \text { t } f=> \\
& \quad \text { flatten } t=[i \cdots i+\text { size } t])
\end{aligned}
$$

## Relabelling revisited

The type of relabel becomes:
HoareState

$$
\begin{aligned}
& \text { (fun } i=>\text { True) } \\
& \text { (Tree nat) } \\
& \text { (fun } i \text { } t \text { }=> \\
& \quad \text { flatten } t=[i \ldots i+\text { size } t] \\
& \quad \text { } \backslash f=i+\operatorname{size} t \text { ) }
\end{aligned}
$$

## The Problem of the Dutch National Flag

Wouter Swierstra
IFIPWG 2.I \#66

## Type Theory Per Martin-Löf

- A foundation of constructive mathematics;
- a functional programming language.



## Type Theory Per Martin-Löf

- A foundation of constructive mathematics:
- a functional programming language.



## Really?

## What about...

- mutable references?
- arrays?
- exceptions?
- concurrency?
- a GUI?
- a foreign function interface?
- network communication?
- a compiler?
- general recursion?
- file manipulation?
- random numbers?
- ...

There is a row of buckets numbered from 1 to $n$. It is given that:

- each bucket contains one pebble
- each pebble is either red, white, or blue.

A mini-computer is placed in front of this row of buckets and has to be programmed in such a way that it will rearrange (if necessary) the pebbles in the order of the Dutch national flag.
A Discipline of Programming, E.W. Dijkstra

## Specification

- The mini-computer supports two commands:
- swap (i,j) exchanges the pebbles in buckets numbered i and j for $I \leq i, j \leq n$;
- read (i) returns the colour of the pebble in bucket number ifor $l \leq i \leq n$.
- Solution should use one pass only and constant memory.


## The Problem of the Dutch National Flag

Wouter Swierstra
IFIPWG 2.I \#66

## The Problem of the Duta National Flag

Wouter Swierstra IFIPWG 2.I \#66

## $0000$

## $\square$ <br>  $\square$

Known to
be red



Known to be red


Known to be red


Known to be red

$\uparrow \begin{aligned} & \text { Known to } \\ & \text { be white }\end{aligned}$

Known to be red

$\uparrow \begin{gathered}\text { Known to } \\ \text { be white }\end{gathered}$

Known to be red

$\uparrow \begin{gathered}\text { Known to } \\ \text { be white }\end{gathered}$




## Can we find a solution:

- that terminates on all inputs;
- satisfies the specification;
- and has machine verified proofs of both these properties.


## Plan of attack

- Use the dependently typed programming language Agda to:
- implement the mini-computer;
- write an algorithm that sorts the pebbles;
- prove the algorithm correct.


## The Mini-Computer

## Pebbles

data Pebble : Set where
Red : Colour
White : Colour

# Natural numbers 

data Nat : Set where
Zero : Nat
Succ : Nat -> Nat

## Buckets

data Buckets : Nat -> Set where Nil : Buckets Zero
Cons : Pebble -> Buckets n -> Buckets (Succ n)

## The state monad

State : Nat -> Set -> Set
State n a =
Buckets n -> Pair a (Buckets n)
return : a -> State n a
_>>=_ : State n a ->
(a -> State n b) -> State n b

## Indices

data Index : Nat -> Set where One : Index (Succ n)
Next : Index n ->
Index (Succ n)

## Indices

data Index : Nat -> Set where One : Index (Succ n)
Next : Index n ->
Index (Succ n)


## Reading

read : Index n -> State Pebble
read i bs = (bs ! i , bs)
where
_!_ : Buckets n -> Index n
-> Pebble
(Cons p _) ! One = p
(Cons _ ps) ! (Next i) = ps ! i

## Swap

swap : Index n -> Index n
-> State n Unit
swap i j =
read $i \gg=\backslash p i->$
read j >>= \pj $->$
write i pj >>
write j pi

## Back to the problem

## An approximation

sort : : Index n -> Index n
-> State n Unit
sort $r$ w =
if $\mathrm{w}==r$ then return unit
else case read r of
Red $->\operatorname{sort}(r+1) w$
White -> swap r w >>

$$
\text { sort r }(w-1)
$$

## An approximation

$\begin{aligned} & \text { sort }: \text { : Index } \mathrm{n} \\ & \text {-> State } \mathrm{n} \text { Unit }\end{aligned}$
sort r w =
if what don rowed. Redreflert $(r+1)$ w White -> swap r w >>

$$
\text { sort r }(w-1)
$$

## An approximation

sort : : Index $\mathrm{n}->$ Index n
-> State n Unit
sort r w =
if $r==W$ then return unit
else case read $r$ of
White $->\operatorname{sort}(r+1)$ w Red -> swap r w >>

$$
\text { sort r }(w-1)
$$

## An approximation

## sort : : Index $\mathrm{n}->$ Index n

Only terminates
if r if $\boldsymbol{r}_{\mathrm{t}} \boldsymbol{S}_{\mathrm{n}} \mathbf{W}$ eturn unit
else case read r of

$$
\begin{aligned}
& \text { White }->\text { sort }(r+1) \text { w } \\
& \text { Red }->\text { swap } r \text { w } \\
& \text { sort } r(w-1)
\end{aligned}
$$

## Manipulating Indices

sort : : Index $n->$ Index $n$
-> State n Unit
sort r w =

> if $r==w$ then return unit
> else case read $r$ of
 Red -> swap r w >>

$$
\text { sort r }(\mathrm{w}-1)
$$

## Two problems

- We need to increment and decrement inhabitants of Index n ;
- We need to prove that our algorithm terminates.

Next : Index n -> Index (Succ n)

## Injection

inj : Index $n$-> Index (Succ $n$ )
inj One = One
inj (Next i) $=$ Next (inj i)

## Next or inj



## Idea

- Only increment the image of inj;
- Only decrement the image of Next.


## Less than or equal

data _<=_ : (i j : Index n) -> Set where
Base : (i : Index (Succ n)) -> One <= i
Step : (i j : Index n) ->

$$
(i<=j)->(\text { Next } i<=\text { Next j) }
$$

## Difference

data Diff : (i j : Index n) -> Set where
Base : (i : Index n) -> Diff i i
Step : (i j : Index n) ->
Diff i j -> Diff (inj i) (Next j)

## Sort

$$
\begin{aligned}
\text { sort : } & (r \mathrm{w}: \text { Index } \mathrm{n}) \quad-> \\
& \text { Diff } \mathrm{r} \mathrm{w}-> \\
& \text { State } \mathrm{n} \text { Unit }
\end{aligned}
$$

## Sort - Base case



Diff r w ->
State n Unit
sort .i .i (Base i) = return unit

## sort : (r w : Index n ) $->$ <br> Diff r w ->

State n Unit

$$
\begin{aligned}
\text { sort : } & (\mathrm{r} \text { w : Index } \mathrm{n}) \text {-> } \\
& \text { Diff } \mathrm{r} \text { w -> } \\
& \text { State } \mathrm{n} \text { Unit } \\
\text { sort . } & (\text { inj i) } \cdot(\text { Next j) (Step i j d) }=
\end{aligned}
$$

sort : (r w : Index n) -> Diff r w ->
State n Unit
sort .(inj i) .(Next j) (Step i j d) = read (inj i) >>= \p -> case p of

Red ->
White ->
sort : (r w : Index n) -> Diff r w ->
State n Unit
sort .(inj i) .(Next j) (Step i j d) = read (inj i) >>= \p -> case p of

Red -> sort (Next i) (Next j) ?
White ->
sort : (r w : Index n) -> Diff r w -> State n Unit
sort .(inj i) .(Next j) (Step i j d) = read (inj i) >>= \p -> case p of

Red -> sort (Next i) (Next j) ?
White ->

$$
\begin{aligned}
& \text { swap }(\operatorname{inj} \text { i) }(\text { Next j) >> } \\
& \text { sort }(\operatorname{inj} i)(\operatorname{inj} j) \text { ? }
\end{aligned}
$$

## Lemmas

- We need to prove a few useful lemmas:
- Diff i j -> Diff (Next i) (Next j)
- Diff i j -> Diff (inj i) (inj j)


## Lemmas

- We need to prove a few useful lemmas:
- Diff i j -> Diff (Next i) (Next j)
- Diff i j -> Diff (inj i) (inj j)
...but even then the algorithm is not structurally recursive.


## Difference, revisited

data Diff : (i j : Index n) -> Set where
Base : (i : Index n) -> Diff i i
Step : (i j : Index n) ->
Diff (inj i) (inj j) ->
Diff (Next i) (Next j) ->
Diff (inj i) (Next j)

## Verification

# Verification 

 the easy part
## Formalizing the Invariant

Invariant : (r w : Index n)
-> Buckets n -> Set
Invariant r w bs =
( $\forall \mathrm{i}->\mathrm{w}<\mathrm{i}->\mathrm{bs}$ ! $\mathrm{i}=$ White)
\&\& $(\forall i \rightarrow>i<r \rightarrow b s!i=R e d)$

## Correctness Theorem

$\forall$ r w bs,
Invariant r w bs ->
$\exists \mathrm{m}$ : Index n ,
Invariant m m (sort r w bs)

## Proof sketch

- Proof proceeds by induction on Diff
- Distinguish three cases:
- Base case (trivial);
- No swap happens (not too hard);
- Swap happens (a bit trickier).
- In the latter two cases, we establish the invariant holds and make a recursive call.


## The Dutch National Flag

- The structure of the algorithm stays the same.
- similar invariant;
- similar termination proof.
- Program does more case analysis...
- ... and so do the proofs.
- Messier but no harder.


## Conclusions

- You need a PhD to verify a four line C program in Agda.
- ... but it is possible to verify non-structurally recursive, 'impure' functions in type theory.

