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Jeremy’s Problem



The State Monad

State s a := s -> a * s

return : a -> State s a

(>>=) : State s a 

  -> (a -> State s b) 

  -> State s b



relabel : State nat (Tree nat)

relabel t = match t with

 | Leaf _ => 

    get >>= fun c =>

    put (c + 1) >>=

    return (Leaf c)

 | Node l r => 

    relabel l >>= fun l’ =>

    relabel r >>= fun r’ => 

    return (Node l’ r’)

 end



Idea:
Decorate the state monad with 
pre- and postconditions.



Pre- and postconditions

Define the following types:

Pre := s -> Prop

Post (a : Set) := s -> a -> s -> Prop



The Hoare State Type

Define the following type:

  HoareState s P a Q := 

    {i : s | P i} -> 

      {(x,f) : a * s | Q i x f}



Plan

• Define return and bind with a fancy 
HoareState type.

• Choose a suitable type for our relabelling 
function.



Relabelling revisited

 The type of relabel becomes:

  HoareState 

    (fun i => True)

    (Tree nat) 

    (fun i t f => 

       flatten t = [i .. i + size t])



Relabelling revisited

 The type of relabel becomes:

  HoareState 

    (fun i => True)

    (Tree nat) 

    (fun i t f => 

       flatten t = [i .. i + size t]

       /\ f = i + size t)
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Type Theory
Per Martin-Löf

• A foundation of constructive 
mathematics;
• a functional programming 
language.



Type Theory
Per Martin-Löf

• A foundation of constructive 
mathematics;
• a functional programming 
language.

Really?



What about...
• mutable references?

• arrays?

• exceptions?

• concurrency?

• a GUI?

• a foreign function 
interface?

• network communication?

• a compiler?

• general recursion?

• file manipulation?

• random numbers?

• ...



There is a row of buckets numbered from 1 to 
n. It is given that:

• each bucket contains one pebble

• each pebble is either red, white, or blue.

A mini-computer is placed in front of this row 
of buckets and has to be programmed in such 
a way that it will rearrange (if necessary) the 
pebbles in the order of the Dutch national 
flag.

A Discipline of Programming, E.W. Dijkstra



Specification

• The mini-computer supports two 
commands:

• swap (i,j) exchanges the pebbles in buckets 
numbered i and j for 1 ≤ i,j ≤ n;

• read (i) returns the colour of the pebble in 
bucket number i for 1 ≤ i ≤ n.

• Solution should use one pass only and 
constant memory.
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Can we find a solution:

• that terminates on all inputs;

• satisfies the specification;

• and has machine verified proofs of both 
these properties.



Plan of attack

• Use the dependently typed programming 
language Agda to:

• implement the mini-computer;

• write an algorithm that sorts the pebbles;

• prove the algorithm correct.



The Mini-Computer



Pebbles

data Pebble : Set where
  Red : Colour
  White : Colour



Natural numbers

data Nat : Set where
  Zero : Nat
  Succ : Nat -> Nat



Buckets

data Buckets : Nat -> Set where
  Nil : Buckets Zero
  Cons : Pebble -> Buckets n -> 
         Buckets (Succ n)



The state monad

State : Nat -> Set -> Set
State n a = 
  Buckets n -> Pair a (Buckets n)

return : a -> State n a
_>>=_ : State n a -> 
  (a -> State n b) -> State n b



Indices

data Index : Nat -> Set where
  One : Index (Succ n)
  Next : Index n -> 
         Index (Succ n)



Indices

data Index : Nat -> Set where
  One : Index (Succ n)
  Next : Index n -> 
         Index (Succ n)

0 1 2 3

Next



Reading

read : Index n -> State Pebble
read i bs = (bs ! i , bs)
  where
  _!_ : Buckets n -> Index n 
        -> Pebble
  (Cons p _) ! One = p
  (Cons _ ps) ! (Next i) = ps ! i



Swap

swap : Index n -> Index n 
       -> State n Unit
swap i j = 
  read i >>= \pi ->
  read j >>= \pj ->
  write i pj >>
  write j pi



Back to the problem



An approximation

sort :: Index n -> Index n 
     -> State n Unit
sort r w =
  if w == r then return unit
  else case read r of
    Red   -> sort (r + 1) w
    White -> swap r w >>
             sort r (w - 1)



An approximation

sort :: Index n -> Index n 
     -> State n Unit
sort r w =
  if w == r then return unit
  else case read r of
    Red   -> sort (r + 1) w
    White -> swap r w >>
             sort r (w - 1)

Why does th
is 

terminate? 



An approximation

sort :: Index n-> Index n 
      -> State n Unit
sort r w =
  if r == w then return unit
  else case read r of
    White -> 
    Red ->  swap r w >>
             sort r (w - 1)
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An approximation

sort :: Index n-> Index n 
      -> State n Unit
sort r w =
  if r == w then return unit
  else case read r of
    White -> 
    Red ->  swap r w >>
             sort r (w - 1)

sort (r + 1) w

sort r (w - 1)

Only terminates 
if r ≤ w



Manipulating Indices

    (r + 1)

       (w - 1)

sort :: Index n-> Index n 
      -> State n Unit
sort r w =
  if r == w then return unit
  else case read r of

  White -> sort (r + i)   w
    Red ->  swap r w >>
            sort r (w - 1)



Two problems

• We need to increment and decrement 
inhabitants of Index n ;

• We need to prove that our algorithm 
terminates.



Next : Index n -> Index (Succ n)



Injection

inj : Index n -> Index (Succ n)
inj One = One
inj (Next i) = Next (inj i)



Next or inj

0 1 2 3

Next

0 1 2 3

inj



Idea

• Only increment the image of inj;

• Only decrement the image of Next.



Less than or equal

data _<=_ : (i j : Index n) -> Set where

  Base : (i : Index (Succ n)) -> One <= i

  Step : (i j : Index n) ->

     (i <= j) -> (Next i <= Next j)



Difference

data Diff : (i j : Index n) -> Set where

 Base : (i : Index n) -> Diff i i

 Step : (i j : Index n) ->

    Diff i j -> Diff (inj i) (Next j)



Sort

sort : (r w : Index n) -> 
       Diff r w ->
       State n Unit



Sort – Base case

sort : (r w : Index n) -> 
       Diff r w ->
       State n Unit
sort .i .i (Base i) = return unit





sort : (r w : Index n) -> 
       Diff r w ->
       State n Unit



sort : (r w : Index n) -> 
       Diff r w ->
       State n Unit
sort .(inj i) .(Next j) (Step i j d) =
   



sort : (r w : Index n) -> 
       Diff r w ->
       State n Unit
sort .(inj i) .(Next j) (Step i j d) =
       read (inj i) >>= \p ->
    case p of
      Red -> 
      White -> 



sort : (r w : Index n) -> 
       Diff r w ->
       State n Unit
sort .(inj i) .(Next j) (Step i j d) =
       read (inj i) >>= \p ->
    case p of
      Red -> 
      White -> 

        sort (Next i) (Next j) ?



sort : (r w : Index n) -> 
       Diff r w ->
       State n Unit
sort .(inj i) .(Next j) (Step i j d) =
   

        swap (inj i) (Next j) >>
        sort (inj i) (inj j) ?

    read (inj i) >>= \p ->
    case p of
      Red -> 
      White -> 

        sort (Next i) (Next j) ?



Lemmas

• We need to prove a few useful lemmas:

• Diff i j -> Diff (Next i) (Next j)

• Diff i j -> Diff (inj i) (inj j)



Lemmas

• We need to prove a few useful lemmas:

• Diff i j -> Diff (Next i) (Next j)

• Diff i j -> Diff (inj i) (inj j)

...but even then the algorithm is not structurally recursive. 



data Diff : (i j : Index n) -> Set where

 Base : (i : Index n) -> Diff i i

 Step : (i j : Index n) ->

    Diff (inj i) (inj j) -> 
    Diff (Next i) (Next j) ->

    Diff (inj i) (Next j)

Difference, revisited



Verification



Verification
the easy part



Formalizing the Invariant

Invariant : (r w : Index n)
  -> Buckets n -> Set
Invariant r w bs = 
 (∀ i -> w < i -> bs ! i = White)

 && (∀ i -> i < r -> bs ! i = Red)



Correctness Theorem

∀ r w bs,

Invariant r w bs ->

  ∃ m : Index n, 

  Invariant m m (sort r w bs)



Proof sketch

• Proof proceeds by induction on Diff

• Distinguish three cases:

• Base case (trivial);

• No swap happens (not too hard);

• Swap happens (a bit trickier).

• In the latter two cases, we establish the 
invariant holds and make a recursive call.



The Dutch National Flag

• The structure of the algorithm stays the same.

• similar invariant;

• similar termination proof.

• Program does more case analysis...

• ... and so do the proofs.

• Messier but no harder.



Conclusions

• You need a PhD to verify a four line C 
program in Agda.

• ... but it is possible to verify non-structurally 
recursive, ‘impure’ functions in type theory.


