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Brief bio
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Nottingham);
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Technology).



Dependent types



Notice a pattern?

val split8 : Word16 -> Word8 * Word8

val split16 : Word32 -> Word16 * Word16

val split32 : Word64 -> Word32 * Word32

....



Dependent types

type Word : Nat -> Type

val split : (n : Nat) ->

  Word (n + n) -> Word n * Word n



Dependent types are 
expressive.



Notice any similarities?

isEven : int -> bool 5 : int

isEven(5) : bool



Notice any similarities?

isEven : int -> bool 5 : int

isEven(5) : bool

p → q p

q
Modus ponens



Curry-Howard
isomorphism

• A type system is a logic;

• a type is a proposition;

• a → b → a

• a program is a proof.

• λxλy. x



Simple types = 
propositional logic;



Dependent types =
predicate logic.



Where’s the research?

• The next generation of functional 
programming languages will have dependent 
types (Epigram, Coq, Agda, Trellys).

• Dependent types are great, but...

• ... programs must be terminating and pure;

• How can we write and verify ‘real’ 
programs?



Hardware description & 
functional languages



Project stats

• One year funding from Intel.

• Collaboration between:

• Intel (Carl Seger and Emily Shriver);

• Chalmers (Koen Claessen,  Mary Sheeran, 
and myself).



Behavioural

Structural



Behavioural

Structural

‣ Lava (Bjesse, Claessen, Sheeran, Singh)

‣ Hawk (Cook, Launchbury, Matthews)



Behavioural

Structural

‣ Lava (Bjesse, Claessen, Sheeran, Singh)

‣ Hawk (Cook, Launchbury, Matthews)

‣ Our project



Lava – core type

type lava =

  And of lava * lava

  | Or of lava * lava

  | Not of lava

  | Const of bool

  | ...
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bit_adder x1 x2 = 
(and x1 x2, xor x1 x2)



byte_adder = row 8 bit_adder



let rec sim c = match c with

  | and c1 c2 = (sim c1) && (sim c2)

  | or c1 c2 = (sim c1) || (sim c2)

  | const b = b

  | ...

Lava – simulation



Lava – summary

• A data type for primitive gates (and, not,...);

• Haskell combinators to assemble circuits 
(sequential, parallel, row, butterfly circuits, ...)

• VHDL generation for circuits;

• Simulation and testing using QuickCheck;

• Hooks into automatic theorem provers.



Hawk

• Idea: use Haskell as an executable 
hardware specification language.

• “Shallow embedding” – there is no separate 
data type to represent the structure of our 
circuits.



Hawk - Signals

Signals assign values to every clock cycle:

  type ‘a Signal = Int -> a



Hawk combinators – I

Haskell functions to manipulate signals:

constant :: ‘a -> ‘a Signal
constant x = \c -> x

lift :: (‘a -> ‘b) -> 
  ‘a Signal -> b’ Signal
lift f signal = \c -> f (signal c)



Hawk combinators – II

delay :: ‘a -> ‘a Signal -> ‘a Signal
delay x s = 
  \c -> if c == 0 then x else s (c-1)

mux :: bool Signal
  -> ‘a Signal-> ‘a Signal -> ‘a Signal
mux cs ts es = 
  \c -> if cs c then ts c else es c



Non-trivial examples

• Hawk has been used to describe 
microprocessors

• ALU and register files;

• pipelining;

• branch prediction;

• ...



Hawk review

• Pro: easy to write down executable specs;

• Con: you can’t do anything with these specs 
besides execute them.

• No generating VHDL;

• No automatic theorem proving;

• No power or performance analysis.



Goal

• Can we design a Hawkish specification 
language that

• is capable of early power and performance 
estimates?

• can be integrated with structural languages 
like Lava?



Problem

Suppose we want to write an interpreter for 
this language:

  data Expr = Val Int

    | Add Expr Expr

    | Eq Expr Expr

    | If Expr Expr Expr



Evaluation

eval (Val i) = i

eval (Add l r) = eval l + eval r

eval (Eq x y) = eval x  == eval y

eval (If c t e) = 

  if eval c then eval t else eval e



Evaluation

eval (Val i) = i

eval (Add l r) = eval l + eval r

eval (Eq x y) = eval x  == eval y

eval (If c t e) = 

  if eval c then eval t else eval e

eval :: Expr -> ???



GADTs

data Expr a where

  Val :: Int -> Expr Int

  Add :: Expr Int -> Expr Int -> Expr Int

  Eq :: Expr Int -> Expr Int -> Expr Bool

  If :: Expr Bool -> 

    Expr a -> Expr a -> Expr a



Evaluation revisited

eval :: Expr a -> a

eval (Val i) = i

eval (Add l r) = eval l + eval r

eval (Eq x y) = eval x  == eval y

eval (If c t e) = 

  if eval c then eval t else eval e



Chalk: a deeper 
embedding

data Chalk a where

 Pure :: a -> Chalk a

 App :: Chalk (b -> a) -> Chalk b -> Chalk a

 Delay :: a -> Chalk a -> Chalk a



Chalk: a deeper 
embedding

data Chalk a where

 Pure :: a -> Chalk a

 App :: Chalk (b -> a) -> Chalk b -> Chalk a

 Delay :: a -> Chalk a -> Chalk a

I’ll use an infix operator <*> instead of App



ALU
data Cmd = ADD | SUB | INCR

alu :: Chalk Cmd -> Chalk (Int,Int) ->
       Chalk Int

alu cmds args = 

  pure eval <*> cmds <*> args

  where eval ADD  (x,y) = x + y

        eval SUB  (x,y) = x - y

        eval INCR (x,_) = x + 1



Example - recursion

• We can still use recursion:

iterate :: 

  a -> Chalk (a -> a) -> Chalk a

iterate x h = 

  delay x (h <*> iterate x h)



Simulation

• It is easy to extract original Hawk signal 
functions:

simulate :: Chalk a -> Signal a

simulate (Pure x) = \c -> x

simulate (Delay x h) =

  \c -> if c == 0 then x else h (c-1) 

simulate (App f x) = 

  \c -> (simulate f c) (simulate x c)



Recap

• Hypothesis: writing specs using these 
combinators is no harder than in Hawk;

• ...but we now have more structure at our 
disposal.

• We can use this info to do other analyses.



Example: circuit 
visualisation

• If we assign names to the pure components, 
we can traverse the circuit to extract the 
call graph...

• ...and visualise the circuit using Graphviz.



Example: pipeline depth

depth :: Chalk a -> Signal a

depth (Pure x) = 0

depth (Delay x h) = 1 + depth h

depth (App f x) = max (depth f) (depth x)



Latest results

• Provide users with a language to assigns 
‘costs’ (power/performance/etc.) to various 
pure functions;

• Simulate these circuits and compute costs;

• This can be extended to handle symbolic 
simulation.



Questions?


