Me and

my research
 Wouter Swierstra
 Vector Fabrics, 6/I I/09

Brief bio

- MSc in Software Technology (Utrecht);
- PhD entitled A Functional Specification of Effects (University of Nottingham);
- Postdoc position (Chalmers University of Technology).

Dependent types

Notice a pattern?

```
val split8 : Word16 -> Word8 * Word8
val split16 : Word32 -> Word16 * Word16
val split32 : Word64 -> Word32 * Word32
```


Dependent types

type Word : Nat -> Type val split : (n : Nat) ->

Word (n + n) -> Word n * Word n

Dependent types are expressive.

Notice any similarities?

isEven : int -> bool 5 : int
isEven(5) : bool

Notice any similarities?

isEven : int -> bool 5 : int

isEven(5) : bool

Curry-Howard isomorphism

- A type system is a logic;
- a type is a proposition;
- $a \rightarrow b \rightarrow a$
- a program is a proof.
- $\lambda x \lambda y . x$

Simple types = propositional logic;

Dependent types = predicate logic.

Where's the research?

- The next generation of functional programming languages will have dependent types (Epigram, Coq, Agda, Trellys).
- Dependent types are great, but...
- ... programs must be terminating and pure;
- How can we write and verify 'real' programs?

Hardware description \& functional languages

Project stats

- One year funding from Intel.
- Collaboration between:
- Intel (Carl Seger and Emily Shriver);
- Chalmers (Koen Claessen, Mary Sheeran, and myself).

Lava - core type

type lava =
And of lava * lava
| Or of lava * lava
| Not of lava
| Const of bool
\| ...

bit_adder x1 x2 = (and x 1 x 2 , xor x 1 x 2)

byte_adder = row 8 bit_adder

Lava - simulation

let rec sim $\mathrm{c}=$ match c with

$$
\begin{aligned}
& \mid \text { and } c 1 c 2=(\operatorname{sim} c 1) \& \&(\operatorname{sim} c 2) \\
& \mid \text { or } c 1 c 2=(\operatorname{sim} c 1)| |(\operatorname{sim} c 2) \\
& \mid \text { const } b=b \\
& \mid \ldots
\end{aligned}
$$

Lava - summary

- A data type for primitive gates (and, not,...);
- Haskell combinators to assemble circuits (sequential, parallel, row, butterfly circuits, ...)
- VHDL generation for circuits;
- Simulation and testing using QuickCheck;
- Hooks into automatic theorem provers.

Hawk

- Idea: use Haskell as an executable hardware specification language.
- "Shallow embedding" - there is no separate data type to represent the structure of our circuits.

Hawk - Signals

Signals assign values to every clock cycle: type 'a Signal = Int -> a

Hawk combinators - I

Haskell functions to manipulate signals:

```
constant :: 'a -> 'a Signal
constant x = \c -> x
lift :: ('a -> 'b) ->
    'a Signal -> b' Signal
lift f signal = \c -> f (signal c)
```


Hawk combinators - II

delay :: ‘a -> 'a Signal -> ‘a Signal
delay x s =
\c -> if c == 0 then x else $s(c-1)$
mux :: bool Signal
-> 'a Signal-> 'a Signal -> 'a Signal
mux cs ts es =
\c -> if cs c then ts c else es c

Non-trivial examples

- Hawk has been used to describe microprocessors
- ALU and register files;
- pipelining;
- branch prediction;

Hawk review

- Pro: easy to write down executable specs;
- Con: you can't do anything with these specs besides execute them.
- No generating VHDL;
- No automatic theorem proving;
- No power or performance analysis.

Goal

- Can we design a Hawkish specification language that
- is capable of early power and performance estimates?
- can be integrated with structural languages like Lava?

Problem

Suppose we want to write an interpreter for this language:
data Expr = Val Int
| Add Expr Expr
| Eq Expr Expr
| If Expr Expr Expr

Evaluation

$$
\begin{aligned}
& \text { eval (Val i) = i } \\
& \text { eval (Add l r) = eval l + eval r } \\
& \text { eval (Eq x y) = eval x == eval y } \\
& \text { eval (If c t e) = } \\
& \text { if eval c then eval t else eval e }
\end{aligned}
$$

Evaluation

$$
\begin{aligned}
& \text { eval : : Expr -> ??? } \\
& \text { eval (Val i) = i } \\
& \text { eval (Add l r) = eval l + eval r } \\
& \text { eval (Eq x y) = eval x == eval y } \\
& \text { eval (If c t e) = } \\
& \text { if eval c then eval t else eval e }
\end{aligned}
$$

GADTs

data Expr a where
Val : : Int -> Expr Int
Add : : Expr Int -> Expr Int -> Expr Int
Eq : : Expr Int -> Expr Int -> Expr Bool
If :: Expr Bool ->
Expr a -> Expr a -> Expr a

Evaluation revisited

```
eval :: Expr a -> a
eval (Val i) = i
eval (Add l r) = eval l + eval r
eval (Eq x y) = eval x == eval y
eval (If c t e) =
if eval c then eval t else eval e
```


Chalk: a deeper embedding

data Chalk a where
Pure : : a -> Chalk a
App : : Chalk (b -> a) -> Chalk b -> Chalk a Delay :: a -> Chalk a -> Chalk a

Chalk: a deeper embedding

data Chalk a where
Pure : : a -> Chalk a
App : : Chalk (b -> a) -> Chalk b -> Chalk a Delay :: a -> Chalk a -> Chalk a

I'll use an infix operator <*> instead of App

ALU

data Cmd = ADD | SUB | INCR
alu : : Chalk Cmd -> Chalk (Int,Int) -> Chalk Int
alu cmds args =
pure eval <*> cmds <*> args where eval ADD $(\mathrm{x}, \mathrm{y})=\mathrm{x}+\mathrm{y}$

$$
\begin{aligned}
& \text { eval } \operatorname{SUB}(x, y)=x-y \\
& \text { eval } \operatorname{INCR}\left(x, y_{-}\right)=x+1
\end{aligned}
$$

Example - recursion

- We can still use recursion:
iterate :
a -> Chalk (a -> a) -> Chalk a
iterate x h =

```
delay x (h <*> iterate x h)
```


Simulation

- It is easy to extract original Hawk signal functions:

```
simulate :: Chalk a -> Signal a
simulate (Pure x) = \c -> x
simulate (Delay x h) =
    \c -> if c == 0 then x else h (c-1)
simulate (App f x) =
    \c -> (simulate f c) (simulate x c)
```


Recap

- Hypothesis: writing specs using these combinators is no harder than in Hawk;
- ...but we now have more structure at our disposal.
- We can use this info to do other analyses.

Example: circuit visualisation

- If we assign names to the pure components, we can traverse the circuit to extract the call graph...
- ...and visualise the circuit using Graphviz.

Example: pipeline depth

depth : : Chalk a -> Signal a
depth (Pure x) $=0$
depth (Delay $x \mathrm{~h}$) $=1+$ depth h
depth $(\operatorname{App} \mathrm{f} x)=\max (\operatorname{depth} f)(\operatorname{depth} \mathrm{x})$

Latest results

- Provide users with a language to assigns 'costs' (power/performance/etc.) to various pure functions;
- Simulate these circuits and compute costs;
- This can be extended to handle symbolic simulation.

Questions?

