
Me and
my research

Wouter Swierstra
Vector Fabrics, 6/11/09

Brief bio

• MSc in Software
Technology (Utrecht);

• PhD entitled A Functional
Specification of Effects
(University of
Nottingham);

• Postdoc position
(Chalmers University of
Technology).

Dependent types

Notice a pattern?

val split8 : Word16 -> Word8 * Word8

val split16 : Word32 -> Word16 * Word16

val split32 : Word64 -> Word32 * Word32

....

Dependent types

type Word : Nat -> Type

val split : (n : Nat) ->

 Word (n + n) -> Word n * Word n

Dependent types are
expressive.

Notice any similarities?

isEven : int -> bool 5 : int

isEven(5) : bool

Notice any similarities?

isEven : int -> bool 5 : int

isEven(5) : bool

p → q p

q
Modus ponens

Curry-Howard
isomorphism

• A type system is a logic;

• a type is a proposition;

• a → b → a

• a program is a proof.

• λxλy. x

Simple types =
propositional logic;

Dependent types =
predicate logic.

Where’s the research?

• The next generation of functional
programming languages will have dependent
types (Epigram, Coq, Agda, Trellys).

• Dependent types are great, but...

• ... programs must be terminating and pure;

• How can we write and verify ‘real’
programs?

Hardware description &
functional languages

Project stats

• One year funding from Intel.

• Collaboration between:

• Intel (Carl Seger and Emily Shriver);

• Chalmers (Koen Claessen, Mary Sheeran,
and myself).

Behavioural

Structural

Behavioural

Structural

‣ Lava (Bjesse, Claessen, Sheeran, Singh)

‣ Hawk (Cook, Launchbury, Matthews)

Behavioural

Structural

‣ Lava (Bjesse, Claessen, Sheeran, Singh)

‣ Hawk (Cook, Launchbury, Matthews)

‣ Our project

Lava – core type

type lava =

 And of lava * lava

 | Or of lava * lava

 | Not of lava

 | Const of bool

 | ...

x2

x1

r

c

bit_adder x1 x2 =
(and x1 x2, xor x1 x2)

byte_adder = row 8 bit_adder

let rec sim c = match c with

 | and c1 c2 = (sim c1) && (sim c2)

 | or c1 c2 = (sim c1) || (sim c2)

 | const b = b

 | ...

Lava – simulation

Lava – summary

• A data type for primitive gates (and, not,...);

• Haskell combinators to assemble circuits
(sequential, parallel, row, butterfly circuits, ...)

• VHDL generation for circuits;

• Simulation and testing using QuickCheck;

• Hooks into automatic theorem provers.

Hawk

• Idea: use Haskell as an executable
hardware specification language.

• “Shallow embedding” – there is no separate
data type to represent the structure of our
circuits.

Hawk - Signals

Signals assign values to every clock cycle:

 type ‘a Signal = Int -> a

Hawk combinators – I

Haskell functions to manipulate signals:

constant :: ‘a -> ‘a Signal
constant x = \c -> x

lift :: (‘a -> ‘b) ->
 ‘a Signal -> b’ Signal
lift f signal = \c -> f (signal c)

Hawk combinators – II

delay :: ‘a -> ‘a Signal -> ‘a Signal
delay x s =
 \c -> if c == 0 then x else s (c-1)

mux :: bool Signal
 -> ‘a Signal-> ‘a Signal -> ‘a Signal
mux cs ts es =
 \c -> if cs c then ts c else es c

Non-trivial examples

• Hawk has been used to describe
microprocessors

• ALU and register files;

• pipelining;

• branch prediction;

• ...

Hawk review

• Pro: easy to write down executable specs;

• Con: you can’t do anything with these specs
besides execute them.

• No generating VHDL;

• No automatic theorem proving;

• No power or performance analysis.

Goal

• Can we design a Hawkish specification
language that

• is capable of early power and performance
estimates?

• can be integrated with structural languages
like Lava?

Problem

Suppose we want to write an interpreter for
this language:

 data Expr = Val Int

 | Add Expr Expr

 | Eq Expr Expr

 | If Expr Expr Expr

Evaluation

eval (Val i) = i

eval (Add l r) = eval l + eval r

eval (Eq x y) = eval x == eval y

eval (If c t e) =

 if eval c then eval t else eval e

Evaluation

eval (Val i) = i

eval (Add l r) = eval l + eval r

eval (Eq x y) = eval x == eval y

eval (If c t e) =

 if eval c then eval t else eval e

eval :: Expr -> ???

GADTs

data Expr a where

 Val :: Int -> Expr Int

 Add :: Expr Int -> Expr Int -> Expr Int

 Eq :: Expr Int -> Expr Int -> Expr Bool

 If :: Expr Bool ->

 Expr a -> Expr a -> Expr a

Evaluation revisited

eval :: Expr a -> a

eval (Val i) = i

eval (Add l r) = eval l + eval r

eval (Eq x y) = eval x == eval y

eval (If c t e) =

 if eval c then eval t else eval e

Chalk: a deeper
embedding

data Chalk a where

 Pure :: a -> Chalk a

 App :: Chalk (b -> a) -> Chalk b -> Chalk a

 Delay :: a -> Chalk a -> Chalk a

Chalk: a deeper
embedding

data Chalk a where

 Pure :: a -> Chalk a

 App :: Chalk (b -> a) -> Chalk b -> Chalk a

 Delay :: a -> Chalk a -> Chalk a

I’ll use an infix operator <*> instead of App

ALU
data Cmd = ADD | SUB | INCR

alu :: Chalk Cmd -> Chalk (Int,Int) ->
 Chalk Int

alu cmds args =

 pure eval <*> cmds <*> args

 where eval ADD (x,y) = x + y

 eval SUB (x,y) = x - y

 eval INCR (x,_) = x + 1

Example - recursion

• We can still use recursion:

iterate ::

 a -> Chalk (a -> a) -> Chalk a

iterate x h =

 delay x (h <*> iterate x h)

Simulation

• It is easy to extract original Hawk signal
functions:

simulate :: Chalk a -> Signal a

simulate (Pure x) = \c -> x

simulate (Delay x h) =

 \c -> if c == 0 then x else h (c-1)

simulate (App f x) =

 \c -> (simulate f c) (simulate x c)

Recap

• Hypothesis: writing specs using these
combinators is no harder than in Hawk;

• ...but we now have more structure at our
disposal.

• We can use this info to do other analyses.

Example: circuit
visualisation

• If we assign names to the pure components,
we can traverse the circuit to extract the
call graph...

• ...and visualise the circuit using Graphviz.

Example: pipeline depth

depth :: Chalk a -> Signal a

depth (Pure x) = 0

depth (Delay x h) = 1 + depth h

depth (App f x) = max (depth f) (depth x)

Latest results

• Provide users with a language to assigns
‘costs’ (power/performance/etc.) to various
pure functions;

• Simulate these circuits and compute costs;

• This can be extended to handle symbolic
simulation.

Questions?

