
Data types à la carte
Wouter Swierstra

Dutch HUG 25/8/10

Friday, August 26, 2011

Expressions
data Expr where
 Add :: Expr -> Expr -> Expr

 Val :: Int -> Expr

eval :: Expr -> Int

eval (Val x) = x

eval (Add l r) = eval l + eval r

Friday, August 26, 2011

Adding new features

• In Haskell it’s easier to define new
functions, such as:

print :: Expr -> String

• But what about adding new alternatives to
the data type, such as multiplication?

• We’ll need to add new cases to every
function we’ve already defined.

Friday, August 26, 2011

The Expression
Problem

The Expression Problem is a new name for an
old problem. The goal is to define a datatype
by cases, where one can add new cases to
the datatype and new functions over the
datatype, without recompiling existing code,
and while retaining static type safety (e.g., no
casts). – Phil Wadler, 1998

Friday, August 26, 2011

OO languages

• In Object Oriented languages, it is usually
easy to add new data type alternatives (by
defining new classes);

• But defining new functions means modifying
all existing classes...

Friday, August 26, 2011

Expr revisited

data Expr = ...

What constructors should we choose?

Friday, August 26, 2011

Expr revisited

data Expr f = In (f (Expr f))

Friday, August 26, 2011

Expr revisited

data Expr f = In (f (Expr f))

Abstract over
constructors

Friday, August 26, 2011

Expr revisited

data Expr f = In (f (Expr f))

Abstract over
constructors

Constructors
abstract over
recursive calls

Friday, August 26, 2011

Adding constructors...

data Val e = Val Int
data Add e = Add e e
type ValExpr = Expr Val
type AddExpr = Expr Add

Friday, August 26, 2011

Building types
data Val e = Val Int
data Add e = Add e e
data (:+:) f g e =
 Inl (f e)

 | Inr (g e)

type Both = Expr (Val :+: Add)

Friday, August 26, 2011

Example

addExample :: Expr (Val :+: Add)

addExample = In (Inr (Add (In (Inl
(Val 32))) (In (Inl (Val 10)))))

Friday, August 26, 2011

What next?

• We can define modular data types in this
fashion.

• But how can we define modular functions?

• How can we build values easily?

Friday, August 26, 2011

Functors
data Val e = Val Int
data Add e = Add e e
class Functor where
 fmap :: (a -> b) -> f a -> fb
instance Functor Add where
 fmap f (Add l r) = Add (f l) (f r)
instance Functor Val where
 fmap f (Val i) = Val i

Friday, August 26, 2011

Why functors?

fold :: Functor f =>

 (f a -> a) -> Expr f -> a

fold f (In t) = f (fmap (fold f) t)

Friday, August 26, 2011

Defining evaluation

class Functor f => Eval f where
 evalAlg :: f Int -> Int

instance Eval Val where
 evalAlg (Val i) = i
instance Eval Add where
 evalAlg (Add l r) = l + r

Friday, August 26, 2011

Putting the pieces
together

class Functor f => Eval f where
 evalAlg :: f Int -> Int

instance (Eval f, Eval g) =>
 Eval (f :+: g) where
 evalAlg (Inl f) = evalAlg f

 evalAlg (Inr g) = evalAlg g

Friday, August 26, 2011

Defining eval

eval :: Eval f => Expr f -> Int

eval expr = fold evalAlg expr

*Main> eval addExample

42

Friday, August 26, 2011

Modular functions

• Show that all your constructor types are
functors.

• Define a class for every function that you
want to define.

• Add instances for every constructor.

• Use the class system to assemble the
pieces.

Friday, August 26, 2011

Smart constructors

• Writing out Inl/Inr/In by hand is tiring
and error-prone.

• How can we automate this?

 x :: Expr (Val :+: Add)

 x = val 3 <+> val 5

Friday, August 26, 2011

A first attempt...

val :: Int -> Expr Val

val x = In (Val x)

(<+>) :: Expr Add -> Expr Add

 -> Expr Add

l <+> r = In (Add l r)

Friday, August 26, 2011

A first attempt...

val :: Int -> Expr Val

val x = In (Val x)

(<+>) :: Expr Add -> Expr Add

 -> Expr Add

l <+> r = In (Add l r)

But this is non-modular!

Friday, August 26, 2011

What we’ll achieve

val :: Val :<: f => Int -> Expr f

val x = In (inject x)

(<+>) :: Add :<: f =>

 Expr f -> Expr f -> Expr f

l <+> r = In (inject (Add l r))

Friday, August 26, 2011

Finding Injections
class sub :<: sup where
 inject :: sub a -> sup a
instance f :<: f where
 inject x = x
instance f :<: (f :+: g) where
 inject x = Inl x
instance f :<: g =>
 f :<: (h :+: g) where
 inject x = Inr (inject x)

Friday, August 26, 2011

Taking stock

• How hard is it to add new functions?

• Or new constructors?

Friday, August 26, 2011

Adding multiplication

data Mul e = Mul e e
instance Functor Mul where
 fmap f (Mul l r) = Mul (f l) (f r)
instance Eval Mul where
 evalArg (Mul x y) = x * y
(<*>) l r = In (inject (Mul l r))

Friday, August 26, 2011

Example

t :: Expr (Mul :+: Add :+: Val)

t = 1 <+> (2 <*> 3)
*Main> eval t
7

Friday, August 26, 2011

Adding pretty printing
class Render f where
 render :: Render g =>
 f (Expr g) -> String
instance Render Add where
 render (Add l r) = parens $
 render l ++ “+” ++ render r
instance Render Val where
 render (Val x) = show x

Friday, August 26, 2011

Adding pretty printing

class Render f where
 render :: Render g =>
 f (Expr g) -> String
instance (Render f,Render g) =>
 Render (f:+:g) ...

pretty :: Render f => Expr f -> String
pretty (In t) = render t

Friday, August 26, 2011

Conclusions

• This works well for simple data types...

• But mutually recursive/polymorphic/nested/
generalized algebraic data types are harder.

• The same technology can be used to
combine (a certain class of) monads.

Friday, August 26, 2011

