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Expressions
data Expr where
  Add :: Expr -> Expr -> Expr

  Val :: Int -> Expr

eval :: Expr -> Int

eval (Val x) = x

eval (Add l r) = eval l + eval r
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Adding new features

• In Haskell it’s easier to define new 
functions, such as:

print :: Expr -> String

• But what about adding new alternatives to 
the data type, such as multiplication?

• We’ll need to add new cases to every 
function we’ve already defined.
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The Expression 
Problem

The Expression Problem is a new name for an 
old problem. The goal is to define a datatype 
by cases, where one can add new cases to 
the datatype and new functions over the 
datatype, without recompiling existing code, 
and while retaining static type safety (e.g., no 
casts). – Phil Wadler, 1998
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OO languages

• In Object Oriented languages, it is usually 
easy to add new data type alternatives (by 
defining new classes);

• But defining new functions means modifying 
all existing classes...
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Expr revisited

data Expr = ...

What constructors should we choose?
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Expr revisited

data Expr f = In (f (Expr f))
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Expr revisited

data Expr f = In (f (Expr f))

Abstract over 
constructors
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Expr revisited

data Expr f = In (f (Expr f))

Abstract over 
constructors

Constructors
abstract over 
recursive calls
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Adding constructors...

data Val e = Val Int
data Add e = Add e e
type ValExpr = Expr Val
type AddExpr = Expr Add
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Building types
data Val e = Val Int
data Add e = Add e e
data (:+:) f g e = 
    Inl (f e)

  | Inr (g e)

type Both = Expr (Val :+: Add)
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Example

addExample :: Expr (Val :+: Add)

addExample = In (Inr (Add (In (Inl 
(Val 32))) (In (Inl (Val 10)))))
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What next?

• We can define modular data types in this 
fashion.

• But how can we define modular functions?

• How can we build values easily?
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Functors
data Val e = Val Int
data Add e = Add e e
class Functor where
  fmap :: (a -> b) -> f a -> fb
instance Functor Add where
  fmap f (Add l r) = Add (f l) (f r)
instance Functor Val where
  fmap f (Val i) = Val i
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Why functors?

fold :: Functor f => 

  (f a -> a) -> Expr f -> a

fold f (In t) = f (fmap (fold f) t)
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Defining evaluation

class Functor f => Eval f where
  evalAlg :: f Int -> Int

instance Eval Val where
  evalAlg (Val i) = i
instance Eval Add where
  evalAlg (Add l r) = l + r
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Putting the pieces 
together

class Functor f => Eval f where
  evalAlg :: f Int -> Int

instance (Eval f, Eval g) => 
  Eval (f :+: g) where
  evalAlg (Inl f) = evalAlg f

  evalAlg (Inr g) = evalAlg g
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Defining eval

eval :: Eval f => Expr f -> Int

eval expr = fold evalAlg expr

*Main> eval addExample

42
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Modular functions

• Show that all your constructor types are 
functors.

• Define a class for every function that you 
want to define.

• Add instances for every constructor.

• Use the class system to assemble the 
pieces.
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Smart constructors

• Writing out Inl/Inr/In by hand is tiring 
and error-prone.

• How can we automate this?

 x :: Expr (Val :+: Add)

 x = val 3 <+> val 5

Friday, August 26, 2011



A first attempt...

val :: Int -> Expr Val

val x = In (Val x)

(<+>) :: Expr Add -> Expr Add 

         -> Expr Add

l <+> r = In (Add l r)
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A first attempt...

val :: Int -> Expr Val

val x = In (Val x)

(<+>) :: Expr Add -> Expr Add 

         -> Expr Add

l <+> r = In (Add l r)

But this is non-modular!
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What we’ll achieve

val :: Val :<: f => Int -> Expr f

val x = In (inject x)

(<+>) :: Add :<: f => 

  Expr f -> Expr f -> Expr f

l <+> r = In (inject (Add l r))
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Finding Injections
class sub :<: sup where
  inject :: sub a -> sup a
instance f :<: f where
  inject x = x
instance f :<: (f :+: g) where
  inject x = Inl x
instance f :<: g => 
  f :<: (h :+: g) where
  inject x = Inr (inject x)
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Taking stock

• How hard is it to add new functions?

• Or new constructors?
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Adding multiplication

data Mul e = Mul e e
instance Functor Mul where
  fmap f (Mul l r) = Mul (f l) (f r)
instance Eval Mul where
  evalArg (Mul x y) = x * y
(<*>) l r = In (inject (Mul l r))
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Example

t :: Expr (Mul :+: Add :+: Val)

t = 1 <+> (2 <*> 3)
*Main> eval t
7
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Adding pretty printing
class Render f where
  render :: Render g =>
    f (Expr g) -> String
instance Render Add where
  render (Add l r) = parens $
    render l ++ “+” ++ render r
instance Render Val where
  render (Val x) = show x

Friday, August 26, 2011



Adding pretty printing

class Render f where
  render :: Render g =>
    f (Expr g) -> String
instance (Render f,Render g) => 
  Render (f:+:g) ...

pretty :: Render f => Expr f -> String
pretty (In t) = render t
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Conclusions

• This works well for simple data types...

• But mutually recursive/polymorphic/nested/
generalized algebraic data types are harder.

• The same technology can be used to 
combine (a certain class of) monads.
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