
The Logic of Interaction
Wouter Swierstra
Nijmegen, 13/09/10

Wouter Swierstra
Nijmegen, 13/09/10

Me and my research
Wouter Swierstra
Nijmegen, 13/09/10

How can we write
better software?

How can we write
better software?

Model checking

Automatic
testing

Theorem proving

Static typing

Best software
engineering practices

Static
analysis

Type Theory
Per Martin-Löf

• A foundation of constructive
mathematics;
• a functional programming
language.

Type Theory
Per Martin-Löf

• A foundation of constructive
mathematics;
• a functional programming
language.

Really?

What about...
• mutable references?

• arrays?

• exceptions?

• concurrency?

• a GUI?

• a foreign function
interface?

• network communication?

• a compiler?

• general recursion?

• file manipulation?

• random numbers?

• ...

PhD Thesis

• Goal: Reason about effectful programs.

• Solution: Implement a pure and total
specification of effects in type theory.
Replace specs with “real effects” on
compilation.

• Result: Write and reason about effectful
programs.

What’s missing?

• I’ve studied this approach for individual
effects – but what is the common theme?

• Proofs in type theory can be hard – what
reasoning principles can we use to make them
easier.

This year:
common theme

This year:
common theme

• Study how Hancock-Setzer interaction
structures can be used for effectful,
dependently-typed programming.

This year:
common theme

• Study how Hancock-Setzer interaction
structures can be used for effectful,
dependently-typed programming.

• ... and find grant money to continue this line
of research.

Today:
reasoning principle

Relabelling a tree

Inductive Tree (a : Set) : Set :=

 | Leaf : a -> Tree a

 | Node : Tree a -> Tree a -> Tree a

relabel : forall a, Tree a -> Tree nat

relabel
3

1 2

a

a b

Relabelling 1.0
Fixpoint relabel (a : Set)

 (t : Tree a) (s : nat) : Tree nat * nat

Relabelling 1.0

 := match t with

 | Leaf _ => (Leaf s, s + 1)

 | Node l r =>

 let (l’, s’) := relabel l s

 in let (r’, s’’) := relabel r s’

 in (Node l’ r’, s’’)

 end

Fixpoint relabel (a : Set)

 (t : Tree a) (s : nat) : Tree nat * nat

Recursive step

 | Node l r =>

 let (l’, s’) := relabel l s

 in let (r’, s’’) := relabel r s’

 in (Node l’ r’, s’’)

Recursive step

 | Node l r =>

 let (l’, s’) := relabel l s

 in let (r’, s’’) := relabel r s’

 in (Node l’ r’, s’’)

Easy to make a mistake!

The state monad

(* For some fixed type s *)

Definition State (a : Set) : Type

 := s -> a * s

return : a -> State a

bind : State a

 -> (a -> State b)

 -> State b

Return

Definition State (a : Set) : Type

 := s -> a * s

Definition return (a : Set)

 : a -> State a :=

 fun x => fun s => (x, s)

Bind

Definition State (a : Set) : Type

 := s -> a * s

Definition bind (a b : Set)

(c1 : State a) (c2 : a -> State b) : State b

 := fun s => let (x, s’) := c1 s

 in c2 x s’

Bind

Definition State (a : Set) : Type

 := s -> a * s

Definition bind (a b : Set)

(c1 : State a) (c2 : a -> State b) : State b

 := fun s => let (x, s’) := c1 s

 in c2 x s’

I’ll use an infix operator, >>= , instead of bind

Relabelling 2.0

 | Node l r =>

 relabel l >>= fun l’ =>

 relabel r >>= fun r’ =>

 return (Node l’ r’)

Relabelling 2.0

 | Node l r =>

 relabel l >>= fun l’ =>

 relabel r >>= fun r’ =>

 return (Node l’ r’)

No more passing around the state explicitly!

Challenge:
verify the relabelling function,
without expanding the
definitions of return and bind.

Strong specifications

• Strong specifications:

• define a value;

• together with a proof that that value
satisfies the spec.

• Notation in Coq:

 {n : nat | n > 7}

Program

• Coq’s Program framework for working with
strong specifications

• let’s you define functions manipulating
strongly specified values,

• and collects assumptions and obligations.

• You need to prove any proof obligations
(using tactics) before Program generates a
complete Coq term.

Idea:
Decorate the state monad with
pre- and postconditions.

Pre- and postconditions

Define the following types:

Pre := s -> Prop

Post (a : Set) := s -> a -> s -> Prop

The Hoare State Type

Define the following type:

 HoareState P a Q :=

 {i : s | P i} ->

 {(x,f) : a * s | Q i x f}

Remaining questions

• How can we define return?

• How can we define bind?

• How can we use these functions to verify
our relabelling function?

Return

Definition return (x : a) :

 HoareState

 (fun i => True)

 a

 (fun i y f => i = f /\ x = y)

:= fun i => (x,i)

Return

Definition return (x : a) :

 HoareState

 (fun i => True)

 a

 (fun i y f => i = f /\ x = y)

:= fun i => (x,i)

Need to complete one trivial proof.

Bind - I

 HoareState P1 A Q1 ->

 (A -> HoareState P2 B Q2) ->

 HoareState ... B ...

What should the pre- and postconditions be?

Bind - II

 HoareState P1 A Q1 ->

 ((x:A) -> HoareState (P2 x) B (Q2 x)) ->

 HoareState ... B ...

What should the pre- and postconditions be?

Bind’s precondition

\s1 -> P1 s1

 /\ forall x s2, Q1 s1 x s2 -> P2 x s2

The initial state must satisfy
the first computation’s precondition

Bind’s precondition

\s1 -> P1 s1

 /\ forall x s2, Q1 s1 x s2 -> P2 x s2

The initial state must satisfy
the first computation’s precondition

Bind’s precondition

\s1 -> P1 s1

 /\ forall x s2, Q1 s1 x s2 -> P2 x s2

The intermediate state satisfies
the second computation’s precondition.

Bind’s precondition

\s1 -> P1 s1

 /\ forall x s2, Q1 s1 x s2 -> P2 x s2

The intermediate state satisfies
the second computation’s precondition.

Bind’s postcondition

\s1 y s3 -> exists x, exists s2,

 Q1 s1 x s2 /\ Q2 x s2 y s3

There is an intermediate result and an intermediate state
relating the two computations.

Implementing bind

• The definition of bind is exactly the same
as for the state monad...

• ...but we need to fulfill one or two proof
obligations.

Using the
Hoare State Monad

To verify programs in the state monad, all we
need to do is change the type signature, that
is, choose the pre- and postconditions.

The program remains unchanged.

Relabelling revisited

 HoareState

 (fun i => True)

 (Tree nat)

 (fun i t f =>

 flatten t = [i .. i + size t])

Relabelling revisited

 HoareState

 (fun i => True)

 (Tree nat)

 (fun i t f =>

 flatten t = [i .. i + size t]

 /\ f = i + size t)

The proof

• The definition gives rise to two proof
obligations, one for every case branch.

• We’ve automated away all work involved
in keeping track of the state;

• The proof for the recursive case is only
about 5 lines long (but uses some fancy
Program tactics).

Discussion

• Other choices for pre- and postconditions?

• Is the HoareState type a monad?

• Further automation using Ltac?

