Dependent types,
predicate transformers
and refinement

Wouter Swierstra
with credit to Peter Hancock

Refinement calculus

® A single language for specifications & code;

® A logic describing valid refinement steps
that can be used to turn a specification into
executable code.

Dependently typed
languages

® A single language for specifications & code;

® A general purpose higher-order
constructive logic...

® .. thatis capable of describing other
programming logics.

How can we embed a
refinement calculus in
a proof assistant?

How can we program
with effects in
a dependently typed language!

Related work

Ynot My thesis
Axiomatic extension; No axioms;
Not executable; Executable;
Rich logic; More limited logic;
Easy to add new More operations is more

operations. work.

Aims

® Show how existing languages are expressive
enough to embed program logics...

® _..and use these logics to reason about
effectful programs.

Predicates

® Predicates:

Pred a = a -> Set

® We be working (mostly) with predicates on
some fixed type of states.

® |’|| use the usual definition of inclusion:
PcQ : Pred s -> Pred s ->Set
PcQ=(s :S5) ->Ps ->Q s

Representing
predicate transformers

record PT : Set
pre : Pred S
post : (s : S) -> pre s -> Pred S

® A precondition and postcondition, relating
the final state to an input satisfying the
precondition.

® |'ll write [g,p] for such a record.

Example: skip

record PT : Set
pre . Pred S
post : (s : S) -> pre s -> Pred S

® Skip, the lowest possible hurdle:

skip : PT
skip = [pre,post]
where

pre = \s -> True
post = \s pres s’ ->'s S
0

Semantics

wp : PT -> Pred S -> Pred S

wp [pre,post] U s =

3 p . pres, post spclU

Weakest preconditions

Definition
Given S a statement, the weakest-precondition of S is a function map

precondition on the initial state ensuring that execution of S terminates |

More formally, let us use variable x to denote abusively the tuple of vari
correctness if and only if the first-order predicate below holds:

Vx, P = wp(S, Q)

Formally, weakest-preconditions are defined recursively over the abstrag
state transformers where the predicate in parameter is a continuation.

Skip

wp(skip, R) =

Wikipedia

Provable

® Remember:

skip : PT
wp : PT -> Pred S -> Pred S

® But now we can prove:

skipLemma :

(p : Pred s) -> (wp skip p c p)

L

Refinement

® We need to define a refinement relation
between predicate transformers...

® and then use this to prove laws like:

skipLaw : ([pre,post] : PT) ->

(pre ¢ post) -> [pre,post] £ skip

Refinement

record Refines ([prel,post1]:PT)
(pre2,post2]:PT) where
d . prel c pre2
r . (s :9S) ->(p : prel s) ->

post2 s (d s p) c postl s p

Refinement laws

® The usual list of laws become provable
theorems, rather than ‘arbitrary’ axioms

skipLaw : ([pre,post] : PT) ->
(pre ¢ post) -> pt C skip

skiplLaw =
let sd =\ -> true 1n
let sr = \s pres s’ skipPost -> ... 1n

record {d = sd; r = sr}

The whole story

® You can play this game for a small WHILE
language, defining for every statement:

® a predicate transformers;

® a proof that this transformer satisfies the
‘usual’ wp semantics;

® and a proof that the corresponding
refinement law holds.

Assignment

assign : S -> PT
assign s = [pre,post]
where
pre s = True

7

post s'" = (s’ = 5s)

Note: s replaces the entire state.

While

while : (S -> Bool) -> Pred S
-> PT -> PT
while cond inv [bPre,bPost]
= [pre,post]
where
pre = 1nv
post s pres s’ = 1nv s’
& not(cond s')

While

while : (S -> Bool) -> Pred S
-> PT -> PT
while cond inv [bPre,bPost]
= [pre,post]
where
pre = 1nv
post s pres s’ = 1nv s’
& not(cond s')

Note: this is partial correctness

20

Sequencing

seq . PT -> PT -> PT
seq [prel,postl] [pre2,post2] =

[pre,post]

where

pre s =3 (p : pres), (t :5S5) ->
postl s p t -> pre2 t

post s pres s' =3 (t : S),
3 (q : postl s (fst pres) t,
post2 t (snd pres t q) s’

Shallow or deep!

® Now the statements are all identified with
their representation as predicate
transformers.

® Alternatively define:

data Prog : Set where
Skip : Prog
Seq : Prog -> Prog -> Prog
Spec : Pred S -> Prog...

Remaining work

® | have ‘prototype’ implementations of
various language constructs in Agda and
Coq — but it’s still very hard to use.

® | have avoided allocation of fresh variables
and reasoning about ‘frame rules’

® Examples!

More related work

® |dea first appeared in Peter Hancock’s
thesis;

® Structure closely resembles Altenkirch &
Morris’s indexed containers (LICS "09).

