
Dependent types,
predicate transformers

and refinement
Wouter Swierstra

with credit to Peter Hancock

1

Refinement calculus

• A single language for specifications & code;

• A logic describing valid refinement steps
that can be used to turn a specification into
executable code.

2

Dependently typed
languages

• A single language for specifications & code;

• A general purpose higher-order
constructive logic...

• ... that is capable of describing other
programming logics.

3

How can we embed a
refinement calculus in

a proof assistant?

4

How can we program
with effects in

a dependently typed language?

5

Ynot

 Axiomatic extension;

 Not executable;

 Rich logic;

 Easy to add new
operations.

My thesis

 No axioms;

 Executable;

 More limited logic;

 More operations is more
work.

Related work

6

Aims

• Show how existing languages are expressive
enough to embed program logics...

• ...and use these logics to reason about
effectful programs.

7

Predicates

• Predicates:

Pred a = a -> Set

• We be working (mostly) with predicates on
some fixed type of states.

• I’ll use the usual definition of inclusion:

P ⊂ Q : Pred s -> Pred s ->Set

P ⊂ Q = (s : S) -> P s -> Q s
8

Representing
predicate transformers
record PT : Set
 pre : Pred S
 post : (s : S) -> pre s -> Pred S

• A precondition and postcondition, relating
the final state to an input satisfying the
precondition.

• I’ll write [q,p] for such a record.

9

Example: skip

record PT : Set
 pre : Pred S
 post : (s : S) -> pre s -> Pred S

• Skip, the lowest possible hurdle:

skip : PT
skip = [pre,post]
 where
 pre = \s -> True
 post = \s pres s’ -> s ≡ s’

10

Semantics

wp : PT -> Pred S -> Pred S

wp [pre,post] U s =

 ∃ p : pre s, post s p ⊂ U

11

Wikipedia
12

Provable

• Remember:

skip : PT
wp : PT -> Pred S -> Pred S

• But now we can prove:

 skipLemma :

 (p : Pred s) -> (wp skip p ⊂ p)

13

⊑
14

Refinement

• We need to define a refinement relation
between predicate transformers...

• and then use this to prove laws like:

 skipLaw : ([pre,post] : PT) ->

 (pre ⊂ post) -> [pre,post] ⊑ skip

15

Refinement

record Refines ([pre1,post1]:PT)

 (pre2,post2]:PT) where

 d : pre1 ⊂ pre2

 r : (s : S) -> (p : pre1 s) ->

 post2 s (d s p) ⊂ post1 s p

16

Refinement laws

• The usual list of laws become provable
theorems, rather than ‘arbitrary’ axioms

 skipLaw : ([pre,post] : PT) ->
 (pre ⊂ post) -> pt ⊑ skip

skipLaw =
 let sd = _ _ _ -> true in
 let sr = \s pres s’ skipPost -> ... in
 record {d = sd; r = sr}

17

The whole story

• You can play this game for a small WHILE
language, defining for every statement:

• a predicate transformer;

• a proof that this transformer satisfies the
‘usual’ wp semantics;

• and a proof that the corresponding
refinement law holds.

18

Assignment

assign : S -> PT

assign s = [pre,post]

 where

 pre s = True

 post _ _ s’ = (s’ ≡ s)

Note: s replaces the entire state.

19

While

while : (S -> Bool) -> Pred S
 -> PT -> PT
while cond inv [bPre,bPost]
 = [pre,post]
 where
 pre = inv
 post s pres s’ = inv s’
 & not(cond s’)

20

While

while : (S -> Bool) -> Pred S
 -> PT -> PT
while cond inv [bPre,bPost]
 = [pre,post]
 where
 pre = inv
 post s pres s’ = inv s’
 & not(cond s’)

Note: this is partial correctness

20

Sequencing
seq : PT -> PT -> PT
seq [pre1,post1] [pre2,post2] =
 [pre,post]
 where

 pre s = ∃ (p : pre s), (t : S) ->
 post1 s p t -> pre2 t
 post s pres s’ = ∃ (t : S),
 ∃ (q : post1 s (fst pres) t,
 post2 t (snd pres t q) s’

21

Shallow or deep?

• Now the statements are all identified with
their representation as predicate
transformers.

• Alternatively define:

data Prog : Set where
 Skip : Prog
 Seq : Prog -> Prog -> Prog
 Spec : Pred S -> Prog...

22

Remaining work

• I have ‘prototype’ implementations of
various language constructs in Agda and
Coq – but it’s still very hard to use.

• I have avoided allocation of fresh variables
and reasoning about ‘frame rules’

• Examples!

23

More related work

• Idea first appeared in Peter Hancock’s
thesis;

• Structure closely resembles Altenkirch &
Morris’s indexed containers (LICS ’09).

24

