
Programming with
dependent types

Wouter Swierstra

Wednesday, August 24, 2011

Dependent types

• Two 45 minute talks on two dependently
typed systems (Coq & Agda).

• My goal is not to teach all the details of
these systems;

• I want to give you a taste of what’s out
there. I’ve added pointers to further
reading throughout the slides.

Wednesday, August 24, 2011

QuickCheck

• You’ve already seen how useful
QuickCheck can be to find bugs.

• But is QuickCheck always right?

Wednesday, August 24, 2011

Example

Wednesday, August 24, 2011

Random testing

• QuickCheck is a fantastic tool, capable of
finding many bugs.

• “Program testing can be used to show the
presence of bugs, but never to show their
absence!” – Edsger Dijkstra

Wednesday, August 24, 2011

A challenge problem

Prove that for all lists xs, ys, and zs:

xs ++ (ys ++ zs) = (xs ++ ys) ++ zs

Given the following definition for append:

[] ++ ys = ys

(x : xs) ++ ys = x : (xs ++ ys)

Wednesday, August 24, 2011

Maths
Wednesday, August 24, 2011

Equational reasoning

Let’s try a proof by induction on the list xs

In the base case we need to show that:

[] ++ (ys ++ zs) = ([] ++ ys) ++ zs

In the inductive case we need to show that:

(x : xs) ++ (ys ++ zs) =

((x : xs) ++ ys) ++ zs

Wednesday, August 24, 2011

Base case

[] ++ (ys ++ zs) =

 { definition of ++ }

ys ++ zs =

 { definition of ++ }

([] ++ ys) ++ zs

Wednesday, August 24, 2011

(x : xs) ++ (ys ++ zs) =

 { def of ++ }

x : xs ++ (ys ++ zs) =

 { induction hypothesis }

x : (xs ++ ys) ++ zs =

 { def of ++ }

((x:xs) ++ ys) ++ zs

Inductive case

Wednesday, August 24, 2011

Equational reasoning

• It’s ‘easy’ to do proofs about pure
functional programs.

• And once we have a proof, we know for
sure that a property holds. Right?

Wednesday, August 24, 2011

1
 = { def const }
const 1 (head [])
 = { def head }
error “Exception: head []”
 = { def head }
const 2 (head [])
 = { def const }
2

Wednesday, August 24, 2011

Total functions

• Equational reasoning is only valid on total
functions, i.e. those functions that are
guaranteed compute an output for all
possible inputs. Non-examples include:

• The head function is not total (it do not
have a branch for the empty list);

• Nor is dropWhile (it may never
terminate).

Wednesday, August 24, 2011

Coq
An interactive theorem prover

Wednesday, August 24, 2011

Coq
A total functional programming language

Wednesday, August 24, 2011

Programming in Coq
Inductive List (a : Type) : Type :=

 | Nil : List a

 | Cons : a -> List a -> List a.

Fixpoint append (xs ys : List a) : List a

 := match xs with

 | Nil => ys

| Cons x xs => Cons x (append xs ys)

end.

Wednesday, August 24, 2011

Tactics

• Coq proofs are (usually) written using
tactics.

• reflexivity

• simpl

• rewrite

• induction

Wednesday, August 24, 2011

Example

Wednesday, August 24, 2011

Back to Haskell

• You can extract Haskell programs from your
Coq developments.

• This discards any proofs that you’ve done,
but leaves you with verified code.

• This works ‘reasonably well’ – even for
larger Haskell projects like xmonad.

Wednesday, August 24, 2011

Tactics

• There are many more tactics
(http://coq.inria.fr/refman/tactic-index.html)

• You’ll need many other tactics to complete
complex proofs...

• ... but the tactics you’ve seen so far should
be enough to formalize any equational
proof.

Wednesday, August 24, 2011

http://coq.inria.fr/refman/tactic-index.html
http://coq.inria.fr/refman/tactic-index.html

More about Coq...

• If you want to learn more about Coq, there
are numerous tutorials and books online:

• Coq in a hurry (Bertot)

• Software Foundations (Pierce et al.)

• Coq’Art (Bertot & Castéran)

• Certified programming with dependent
types (Chlipala).

Wednesday, August 24, 2011

Agda

Wednesday, August 24, 2011

Data.Word

• There are several different types for fixed-
length bit words:

• Word8

• Word16

• Word32

• Word64 – see a pattern?

Wednesday, August 24, 2011

From HaskellDB
data N1 = N1

data N2 = N2

...

data N255 = N255

Wednesday, August 24, 2011

From HaskellDB
data N1 = N1

data N2 = N2

...

data N255 = N255

class LessThan a b

instance N1 LessThan N2

.....

Wednesday, August 24, 2011

Haskell’s limitations

• You can define algebraic data types and
GADTs in Haskell.

• Data types are not always so simple...

• But how can you define the type of sorted
lists? Or balanced trees? Or a number
between 12 and 43?

Wednesday, August 24, 2011

Agda

• Agda is a dependently typed functional
language;

• Just as in Coq, you can prove properties
about functional programs (although there
is no separate tactic language).

• But it supports programming with a
advanced data types.

Wednesday, August 24, 2011

Dependent types

• In Haskell, you can write new types that
abstract over other types, e.g., List a.

• But types cannot depend on values.

• In Agda you can define types that depend
on values, such as numbers, booleans, or
any other data type.

Wednesday, August 24, 2011

Demo

Wednesday, August 24, 2011

Why dependent types?

λ

Wednesday, August 24, 2011

Why dependent types?

λ

Evil real world

1011...

Wednesday, August 24, 2011

Computing types

• Sometimes you need to compute (static)
types ‘just-in-time’ from (dynamic) data.

• This is ‘impossible’ in Haskell...

• ... but easy in Agda.

Wednesday, August 24, 2011

Example: database

query

response

Wednesday, August 24, 2011

Example: data base

“SELECT ...”

“3525 AB”

Wednesday, August 24, 2011

Example: data base

“DESCRIBE ...”

“NAME TYPE

UserID INT32
...

Wednesday, August 24, 2011

Computing types

fromString :: String -> Set

fromString “INT32” = Int32

fromString “BOOLEAN” = Bool

fromString “DATE” = Date

...

Wednesday, August 24, 2011

Further reading

• The Agda wiki: wiki.portal.chalmers.se/agda

• Dependently typed programming with Agda
(Norell)

• The Power of Pi (Oury & Swierstra)

• List of publications using Agda is maintained
on the Agda wiki.

Wednesday, August 24, 2011

Conclusions

• Dependent types can be used for the
verification of functional programs;

• Dependent types can describe precise data
types;

• Dependent types can compute new types
on the fly – ‘just in time static typing’.

Wednesday, August 24, 2011

Dutch Hug

• Tomorrow night we’ll have a meeting of the
Dutch Haskell User’s Group.

• Talks by myself and possibly a myster guest.

• Pizza!

• Drinks afterwards in the Basket!

Wednesday, August 24, 2011

