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Coq Extraction

• At its heart, Coq has a (simply) typed mini-
programming language Gallina.

• Extraction lets you turn Gallina programs 
into Caml, Haskell, or Scheme code.
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Inside every proof assistant, there’s a 
functional language struggling to get out.
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Idea: Extraction lets you write verified 
software in a heterogeneous programming 
environment.
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Extraction in action

• There are a only handful of ‘serious’ verified 
software developments using Coq and 
extracted code – CompCert being a 
notable example.

• Why isn’t it more widely used?
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This talk

• An experience report documenting an 
attempt at using extraction to replace a 
non-trivial Haskell program.

• An attempt to identify the software 
engineering principles of verification.
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xmonad
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xmonad

• A tiling window manager for X:

• tiles windows over the whole screen;

• automatic arranges windows;

• written, configured, and extensible in 
Haskell;

• had more than 10k downloads in 2010.
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Testimonials

Xmonad fits right into how I think window 
managers should be.
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Testimonials

Xmonad is easily the fastest and has the 
smallest memory footprint I have found yet.

13Wednesday, March 30, 2011



Testimonials

Xmonad is by far the best window manager 
around. It’s one of the reasons I stick with 
Linux.
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Comparison

tool loc Language

metacity > 50k C

ion 27k C

ratpoison 13k C

wmii 7k C

dwm 1.7k C

xmonad 2.5k Haskell
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IO monad

ReaderT

StateT

Core

Evil X Server

xmonad: 
design principles
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Design principles

• Keep the core pure and functional.

• Separate X server calls from internal data 
types and functions (Model-view-
controller).

• Strive for highest quality code.
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What happens in the 
functional core?
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Data types

data Zipper a = Zipper

  { left :: [a]

  , focus :: !a

  , right :: [a]

  }
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Example - I

focusLeft :: Zipper a -> Zipper a

focusLeft (Zipper (l:ls) x rs) = 

  Zipper ls l (x : rs)

focusLeft (Zipper [] x rs) = 

  let (y : ys) = reverse (x : rs)

  in Zipper [] y ys
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Example - II
reverse :: Zipper a -> Zipper a

reverse (Zipper ls x rs) = 

  Zipper rs x ls

focusRight :: Zipper a -> Zipper a

focusRight = 

  reverse . focusLeft . reverse
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Simplification

• The “real” data types talk about several 
workspaces, some of which may be hidden, 
each with their own unique id.

• But these Zipper types are really at the 
heart of xmonad.
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How can we make sure 
the code is reliable?
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Reliability toolkit

• Cabal build system;

• Type system;

• -Wall compiler flags;

• QuickCheck;

• HPC.
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QuickCheck

• Given properties that you expect your 
function to satisfy, QuickCheck generates 
random input and tries to find a counter 
example. For instance:

zipLeftRight :: Zipper Int -> Zipper Int

zipLeftRight z = 

  focusRight (focusLeft z) == z
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HPC

• The Haskell Program Coverage tool keeps 
track of which expressions are evaluated 
during execution.

• dead code;

• spurious conditionals;

• untested code;

• ...
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Example report

67% expressions used (72/106)
 14% boolean coverage (1/7)
     16% guards (1/6), 2 always True, 2 always False, 1 
unevaluated
      0% 'if' conditions (0/1), 1 always True
    100% qualifiers (0/0)
 42% alternatives used (3/7)
 88% local declarations used (8/9)
 80% top-level declarations used (4/5)
unused declarations:
    position
    showRecip.p
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HTML report
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High-assurance 
software

• Combining QuickCheck and HPC:

• Write tests;

• Find untested code;

• Repeat.
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Putting it in practice

• xmonad has:

• ±100% test coverage core functions and 
data structures;

• More than 100 automatically checked 
QuickCheck properties;

• No new patches accepted until all tests 
pass and all code is tested.
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But can we do better 
still...
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What I’ve done

• Re-implemented core xmonad data types 
and functions in Coq,

• Such that the ‘extracted’ code is a drop-in 
replacement for the existing Haskell 
module,

• And formally prove (some of) the 
QuickCheck properties in Coq.
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Blood
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Sweat
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Shell script
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What I’ve learned

• Extraction is not yet mature technology.

• Formal verification can complement, but 
not replace a good test suite.

• There is plenty of work to be done on 
tighter integration between proof assistants 
and programming languages.
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Did I change the 
program?
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Too general types

• The core data types are as polymorphic as 
possible: Zipper a not Zipper Window.

• This is usually, but not always a good thing.

• For example, each window is tagged with a 
‘polymorphic’ type that must be in Haskell’s 
Integral class. 

• But these are only ever instantiated to Int.
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Totality

• This project is feasible because most of the 
functions are structurally recursive.

• But there’s still work to do. Why is this 
function total?

focusLeft (Zipper [] x rs) = 

  let (y : ys) = reverse (x : rs)

  in Zipper [] y ys
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More totality

• One case which required more work.

• One function finds a window with a given 
id, and then move left until it is in focus.

• Changed to compute the number of moves 
necessary and move that many steps.
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Interfacing with Haskell

• I’d like to use Haskell’s data structures for 
finite maps and dictionaries.

• Re-implementing them in Coq is not an 
option.

• Add the API as Axioms to Coq...

• ... but also need to postulate properties. 

• Diagnosis: axiom addiction!
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Extraction problems

• The basic extracted code is a bit rubbish:

• uses unsafeCoerce (too much);

• uses Peano numbers, extracted Coq 
booleans, etc.

• uses extracted Coq data types for 
zippers;

• generates ‘non-idiomatic’ Haskell.
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Customizing extraction

• There are various hooks to customize the 
extracted code:

• inlining functions;

• using Haskell data types;

• realizing axioms.
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Danger!

• Using (a = b) ∨ (a ≠ b) is much more 
informative than Bool.

• But we’d like to use ‘real’ Haskell booleans:

Extract Inductive sumbool =>  
"Bool" [ "True" "False" ].

•  Plenty of opportunity to shoot yourself 
    in the foot!
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User defined data types

• Coq generated data types do not have the 
same names as the Haskell original.

• The extracted file exports ‘too much’.

• Solution:

• Customize extraction.

• Write a sed script that splices in a new 
module header & data types.
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Type classes

• Haskell’s function to check if an element 
occurs in a list:

elem :: Eq a => a -> [a] -> Bool.

• A Coq version might look like:

Variable a : Set.

Variable cmp : forall (x y : a), 

  {x = y} + {x <> y}.

Definition elem : a -> list a -> ...
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Extracted code

• Extracting this Coq code generates functions 
of type:

_elem :: (a -> a -> Bool) -> 

  a -> [a] -> bool.

• Need a manual ‘wrapper function’

elem :: Eq a => a -> [a] -> Bool

elem = _elem (==)
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More type class 
headaches

• We need to assume the existence of 
Haskell’s finite maps:

Axiom FMap : Set -> Set -> Set.

Axiom insert : forall (k a : Set), 

  k -> a -> FMap k a -> FMap k a.

• In reality, these functions have additional type 
class constraints...
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Another dirty fix

• Need another sed script to patch the types 
that Coq generates:

s/insert :: /insert :: Ord a1 => /g

• Not pretty...

• Coq is not the same as Haskell/OCaml.
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And now...

• Extraction & post-processing yields a drop-
in replacement for the original Haskell 
module.

• That passes the xmonad test suite.
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Verification

• So far, this gives us totality (under certain 
conditions).

• Several QuickCheck properties have been 
proven to hold in Coq.

• Some properties are trivial; some are more 
work. But this we know how to do!
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Conclusions

• Extraction is not yet mature technology.

• If you want to do formal verification, sed 
should not be a mandatory part of your 
toolchain.
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Conclusions

• Formal verification can complement, but 
not replace a good test suite.

• Extraction can introduce bugs!

• Never trust ‘formally verified code’ that 
hasn’t been tested.
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Conclusions

• There is plenty of work to be done on 
tighter integration between proof assistants 
and programming languages.

• You don’t want to write all your code in 
Coq; but interacting with another 
programming language all happens through 
extraction.

• What are the alternatives?

55Wednesday, March 30, 2011


