
Adventures in
Extraction

Wouter Swierstra
Brouwer Seminar, 28/3/2011

with some slides from Don Stewart

1Wednesday, March 30, 2011

2Wednesday, March 30, 2011

Coq Extraction

• At its heart, Coq has a (simply) typed mini-
programming language Gallina.

• Extraction lets you turn Gallina programs
into Caml, Haskell, or Scheme code.

3Wednesday, March 30, 2011

Inside every proof assistant, there’s a
functional language struggling to get out.

4Wednesday, March 30, 2011

Idea: Extraction lets you write verified
software in a heterogeneous programming
environment.

5Wednesday, March 30, 2011

Extraction in action

• There are a only handful of ‘serious’ verified
software developments using Coq and
extracted code – CompCert being a
notable example.

• Why isn’t it more widely used?

6Wednesday, March 30, 2011

This talk

• An experience report documenting an
attempt at using extraction to replace a
non-trivial Haskell program.

• An attempt to identify the software
engineering principles of verification.

7Wednesday, March 30, 2011

xmonad

8Wednesday, March 30, 2011

xmonad

• A tiling window manager for X:

• tiles windows over the whole screen;

• automatic arranges windows;

• written, configured, and extensible in
Haskell;

• had more than 10k downloads in 2010.

9Wednesday, March 30, 2011

10Wednesday, March 30, 2011

11Wednesday, March 30, 2011

Testimonials

Xmonad fits right into how I think window
managers should be.

12Wednesday, March 30, 2011

Testimonials

Xmonad is easily the fastest and has the
smallest memory footprint I have found yet.

13Wednesday, March 30, 2011

Testimonials

Xmonad is by far the best window manager
around. It’s one of the reasons I stick with
Linux.

14Wednesday, March 30, 2011

Comparison

tool loc Language

metacity > 50k C

ion 27k C

ratpoison 13k C

wmii 7k C

dwm 1.7k C

xmonad 2.5k Haskell

15Wednesday, March 30, 2011

16Wednesday, March 30, 2011

IO monad

ReaderT

StateT

Core

Evil X Server

xmonad:
design principles

17Wednesday, March 30, 2011

Design principles

• Keep the core pure and functional.

• Separate X server calls from internal data
types and functions (Model-view-
controller).

• Strive for highest quality code.

18Wednesday, March 30, 2011

What happens in the
functional core?

19Wednesday, March 30, 2011

Data types

data Zipper a = Zipper

 { left :: [a]

 , focus :: !a

 , right :: [a]

 }

20Wednesday, March 30, 2011

Example - I

focusLeft :: Zipper a -> Zipper a

focusLeft (Zipper (l:ls) x rs) =

 Zipper ls l (x : rs)

focusLeft (Zipper [] x rs) =

 let (y : ys) = reverse (x : rs)

 in Zipper [] y ys

21Wednesday, March 30, 2011

Example - II
reverse :: Zipper a -> Zipper a

reverse (Zipper ls x rs) =

 Zipper rs x ls

focusRight :: Zipper a -> Zipper a

focusRight =

 reverse . focusLeft . reverse

22Wednesday, March 30, 2011

Simplification

• The “real” data types talk about several
workspaces, some of which may be hidden,
each with their own unique id.

• But these Zipper types are really at the
heart of xmonad.

23Wednesday, March 30, 2011

How can we make sure
the code is reliable?

24Wednesday, March 30, 2011

Reliability toolkit

• Cabal build system;

• Type system;

• -Wall compiler flags;

• QuickCheck;

• HPC.

25Wednesday, March 30, 2011

QuickCheck

• Given properties that you expect your
function to satisfy, QuickCheck generates
random input and tries to find a counter
example. For instance:

zipLeftRight :: Zipper Int -> Zipper Int

zipLeftRight z =

 focusRight (focusLeft z) == z

26Wednesday, March 30, 2011

HPC

• The Haskell Program Coverage tool keeps
track of which expressions are evaluated
during execution.

• dead code;

• spurious conditionals;

• untested code;

• ...

27Wednesday, March 30, 2011

Example report

67% expressions used (72/106)
 14% boolean coverage (1/7)
 16% guards (1/6), 2 always True, 2 always False, 1
unevaluated
 0% 'if' conditions (0/1), 1 always True
 100% qualifiers (0/0)
 42% alternatives used (3/7)
 88% local declarations used (8/9)
 80% top-level declarations used (4/5)
unused declarations:
 position
 showRecip.p

28Wednesday, March 30, 2011

HTML report

29Wednesday, March 30, 2011

High-assurance
software

• Combining QuickCheck and HPC:

• Write tests;

• Find untested code;

• Repeat.

30Wednesday, March 30, 2011

Putting it in practice

• xmonad has:

• ±100% test coverage core functions and
data structures;

• More than 100 automatically checked
QuickCheck properties;

• No new patches accepted until all tests
pass and all code is tested.

31Wednesday, March 30, 2011

But can we do better
still...

32Wednesday, March 30, 2011

What I’ve done

• Re-implemented core xmonad data types
and functions in Coq,

• Such that the ‘extracted’ code is a drop-in
replacement for the existing Haskell
module,

• And formally prove (some of) the
QuickCheck properties in Coq.

33Wednesday, March 30, 2011

Blood
34Wednesday, March 30, 2011

Sweat
35Wednesday, March 30, 2011

Shell script
36Wednesday, March 30, 2011

What I’ve learned

• Extraction is not yet mature technology.

• Formal verification can complement, but
not replace a good test suite.

• There is plenty of work to be done on
tighter integration between proof assistants
and programming languages.

37Wednesday, March 30, 2011

Did I change the
program?

38Wednesday, March 30, 2011

Too general types

• The core data types are as polymorphic as
possible: Zipper a not Zipper Window.

• This is usually, but not always a good thing.

• For example, each window is tagged with a
‘polymorphic’ type that must be in Haskell’s
Integral class.

• But these are only ever instantiated to Int.

39Wednesday, March 30, 2011

Totality

• This project is feasible because most of the
functions are structurally recursive.

• But there’s still work to do. Why is this
function total?

focusLeft (Zipper [] x rs) =

 let (y : ys) = reverse (x : rs)

 in Zipper [] y ys

40Wednesday, March 30, 2011

More totality

• One case which required more work.

• One function finds a window with a given
id, and then move left until it is in focus.

• Changed to compute the number of moves
necessary and move that many steps.

41Wednesday, March 30, 2011

Interfacing with Haskell

• I’d like to use Haskell’s data structures for
finite maps and dictionaries.

• Re-implementing them in Coq is not an
option.

• Add the API as Axioms to Coq...

• ... but also need to postulate properties.

• Diagnosis: axiom addiction!

42Wednesday, March 30, 2011

Extraction problems

• The basic extracted code is a bit rubbish:

• uses unsafeCoerce (too much);

• uses Peano numbers, extracted Coq
booleans, etc.

• uses extracted Coq data types for
zippers;

• generates ‘non-idiomatic’ Haskell.

43Wednesday, March 30, 2011

Customizing extraction

• There are various hooks to customize the
extracted code:

• inlining functions;

• using Haskell data types;

• realizing axioms.

44Wednesday, March 30, 2011

Danger!

• Using (a = b) ∨ (a ≠ b) is much more
informative than Bool.

• But we’d like to use ‘real’ Haskell booleans:

Extract Inductive sumbool =>
"Bool" ["True" "False"].

• Plenty of opportunity to shoot yourself
 in the foot!

45Wednesday, March 30, 2011

User defined data types

• Coq generated data types do not have the
same names as the Haskell original.

• The extracted file exports ‘too much’.

• Solution:

• Customize extraction.

• Write a sed script that splices in a new
module header & data types.

46Wednesday, March 30, 2011

Type classes

• Haskell’s function to check if an element
occurs in a list:

elem :: Eq a => a -> [a] -> Bool.

• A Coq version might look like:

Variable a : Set.

Variable cmp : forall (x y : a),

 {x = y} + {x <> y}.

Definition elem : a -> list a -> ...

47Wednesday, March 30, 2011

Extracted code

• Extracting this Coq code generates functions
of type:

_elem :: (a -> a -> Bool) ->

 a -> [a] -> bool.

• Need a manual ‘wrapper function’

elem :: Eq a => a -> [a] -> Bool

elem = _elem (==)

48Wednesday, March 30, 2011

More type class
headaches

• We need to assume the existence of
Haskell’s finite maps:

Axiom FMap : Set -> Set -> Set.

Axiom insert : forall (k a : Set),

 k -> a -> FMap k a -> FMap k a.

• In reality, these functions have additional type
class constraints...

49Wednesday, March 30, 2011

Another dirty fix

• Need another sed script to patch the types
that Coq generates:

s/insert :: /insert :: Ord a1 => /g

• Not pretty...

• Coq is not the same as Haskell/OCaml.

50Wednesday, March 30, 2011

And now...

• Extraction & post-processing yields a drop-
in replacement for the original Haskell
module.

• That passes the xmonad test suite.

51Wednesday, March 30, 2011

Verification

• So far, this gives us totality (under certain
conditions).

• Several QuickCheck properties have been
proven to hold in Coq.

• Some properties are trivial; some are more
work. But this we know how to do!

52Wednesday, March 30, 2011

Conclusions

• Extraction is not yet mature technology.

• If you want to do formal verification, sed
should not be a mandatory part of your
toolchain.

53Wednesday, March 30, 2011

Conclusions

• Formal verification can complement, but
not replace a good test suite.

• Extraction can introduce bugs!

• Never trust ‘formally verified code’ that
hasn’t been tested.

54Wednesday, March 30, 2011

Conclusions

• There is plenty of work to be done on
tighter integration between proof assistants
and programming languages.

• You don’t want to write all your code in
Coq; but interacting with another
programming language all happens through
extraction.

• What are the alternatives?

55Wednesday, March 30, 2011

