
From Mathematics to
Abstract Machine

Wouter Swierstra
MSFP 2012, Tallinn, Estonia

1Sunday, March 25, 12

(λ x . t0) t1 ! t0 {t1/x}

β reduction

2Sunday, March 25, 12

Motivation

• Implementing β-reduction through
substitutions is a terrible idea!

• Instead, modern languages evaluate lambda
terms using an abstract machine (tail-
recursive function)

3Sunday, March 25, 12

Who comes up with
these things?

4Sunday, March 25, 12

Olivier Danvy
and his many students and collaborators

5Sunday, March 25, 12

Most of our implementations of the abstract
machines raise compiler warnings about non-
exhaustive matches. These are inherent to
programming abstract machines in an ML-like
language – Mads Sig Ager, Dariusz Biernacki,
Olivier Danvy, Jan Midtgaard

6Sunday, March 25, 12

Outline of the paper

• Define well-typed lambda terms;

• Implement a small step evaluator;

• Prove that it terminates;

• Apply program transformations to derive
the Krivine machine.

7Sunday, March 25, 12

Outline of the paper

• Sketch how one might define a terminating
evaluator for the simply typed lambda
calculus in Agda.

• What are the problems?

• What ‘design patterns’ help solve them?

talk

8Sunday, March 25, 12

Types
 data Ty : Set where
 O : Ty
 => : Ty -> Ty -> Ty

 el : U -> Set
 el O = Unit
 el (s => t) = el s -> el t

 Context : Set
 Context = List Ty

9Sunday, March 25, 12

Terms

data Term : Context -> Ty -> Set where
 Lam : Term (Cons u Γ) v
 -> Term Γ (u => v)
 App : Term Γ (u => v) -> Term Γ u
 -> Term Γ v
 Var : Ref Γ u -> Term Γ u

10Sunday, March 25, 12

Normalization-by-cheating

eval : Env Γ -> Term Γ u -> el u

eval env (Lam body)

 = \x -> eval (Cons x env) body
eval env (App f x)

 = (eval env f) (eval env x)

 eval env (Var i)
 = lookup i env

11Sunday, March 25, 12

Closed terms only

12Sunday, March 25, 12

Reduction rules
13Sunday, March 25, 12

Closed terms
data Closed : Ty -> Set where
 Closure : Term Γ u -> Env Γ
 -> Closed u
 Clapp : Closed (u => v) -> Closed u
 -> Closed v

data Env : Context -> Set where
 Nil : Env Nil
 · : Closed u -> Env Γ
 -> Env (Cons u Γ)

14Sunday, March 25, 12

Plan of attack

Define one step of head reduction:

Decompose the term into a redex and
evaluation context;

Contract the redex;

Plug the result back into the context.

Iterated head reduction yields an evaluator.

Prove termination.

15Sunday, March 25, 12

Head reduction in
three steps

Decompose the term into a redex and
evaluation context;

Contract the redex;

Plug the result back into the context.

16Sunday, March 25, 12

Redex

data Redex : Ty -> Set where
 Lookup : Ref Γ u -> Env Γ -> Redex u
 App : Term Γ (u => v) -> Term Γ u
 -> Env Γ -> Redex v
 Beta : Term (Cons u Γ) v -> Env Γ
 -> Closed u -> Redex v

17Sunday, March 25, 12

Contraction

contract : Redex u -> Closed u
contract (Lookup i env) = env ! i
contract (App f x env) =
 Clapp (Closure f env) (Closure x env)
contract (Beta body env arg) =
 Closure body (arg · env)

18Sunday, March 25, 12

Head reduction in
three steps

Decompose the term into a redex and
evaluation context;

Contract the redex;

Plug the result back into the context.

19Sunday, March 25, 12

Evaluation contexts

data EvalContext : Ty -> Ty -> Set where
 MT : EvalContext u u
 ARG : Closed u -> EvalContext v w
 -> EvalContext (u => v) w

20Sunday, March 25, 12

Plug

plug : EvalContext u v ->
 Closed u -> Closed v
plug MT f = f
plug (ARG x ctx) f = plug ctx (Clapp f x)

21Sunday, March 25, 12

Head reduction in
three steps

Decompose the term into a redex and
evaluation context;

Contract the redex;

Plug the result back into the context.

22Sunday, March 25, 12

Decomposition
as a view

• Idea: every closed term is:

• a value;

• or a redex in some evaluation context.

• Define a view on closed terms.

23Sunday, March 25, 12

Decomposition

data Decomposition : Closed u -> Set where
 Val : (t : Closed u) -> isVal t
 -> Decomposition t
 Decompose : (r : Redex v)
 -> (ctx : EvalContext v u)
 -> Decomposition (plug ctx (fromRedex r))

24Sunday, March 25, 12

Decompose

decompose : (c : Closed u) ->
 Decomposition c

25Sunday, March 25, 12

Head reduction in
three steps

Decompose the term into a redex and
evaluation context;

Contract the redex;

Plug the result back into the context.

26Sunday, March 25, 12

Head-reduction

headReduce : Closed u -> Closed u
headReduce c with decompose c
... | Val val p = val
... | Decompose redex ctx
 = plug ctx (contract redex)

27Sunday, March 25, 12

Plan of attack

Define one step of head reduction:

Decompose the term into a redex and
evaluation context;

Contract the redex;

Plug the result back into the context.

Iterated head reduction yields an evaluator.

Prove termination.

28Sunday, March 25, 12

Iterated head reduction

evaluate : Closed u -> Value u
evaluate c = iterate (decompose c)
 where
 iterate : Decomposition c -> Value u
 iterate (Val val p) = Val val p
 iterate (Decompose r ctx)
 = iterate (decompose (plug ctx (contract r)))

29Sunday, March 25, 12

Iterated head reduction

evaluate : Closed u -> Value u
evaluate c = iterate (decompose c)
 where
 iterate : Decomposition c -> Value u
 iterate (Val val p) = Val val p
 iterate (Decompose r ctx)
 = iterate (decompose (plug ctx (contract r)))

30Sunday, March 25, 12

Iterated head reduction

evaluate : Closed u -> Value u
evaluate c = iterate (decompose c)
 where
 iterate : Decomposition c -> Value u
 iterate (Val val p) = Val val p
 iterate (Decompose r ctx)
 = iterate (decompose (plug ctx (contract r)))

30Sunday, March 25, 12

The Bove-Capretta
method

31Sunday, March 25, 12

Bove-Capretta

32Sunday, March 25, 12

Bove-Capretta

data Trace : Decomposition c -> Set where
 Done : (val : Closed u) -> (p : isVal val)
 -> Trace (Val val p)
 Step : Trace (decompose (plug ctx (contract r)))
 -> Trace (Decompose r ctx)

33Sunday, March 25, 12

Iterated head
reduction, again

iterate : {u : Ty} {c : Closed u} ->
 (d : Decomposition c) -> Trace d -> Value u
iterate (Val val p) Done = Val val p
iterate (Decompose r ctx) (Step step) =
 let d' = decompose (plug ctx (contract r)) in
 iterate d' step

34Sunday, March 25, 12

Plan of attack

Define one step of head reduction:

Decompose the term into a redex and
evaluation context;

Contract the redex;

Plug the result back into the context.

Iterated head reduction yields an evaluator.

Prove termination.

35Sunday, March 25, 12

Nearly done

We still need to find a trace for every term...

 (c : Closed u) -> Trace (decompose c)

36Sunday, March 25, 12

Nearly done

We still need to find a trace for every term...

 (c : Closed u) -> Trace (decompose c)Fail
36Sunday, March 25, 12

Nearly done

We still need to find a trace for every term...

 (c : Closed u) -> Trace (decompose c)Fail
Yet we know that the simply typed lambda

calculus is strongly normalizing...

36Sunday, March 25, 12

Logical relation

 Reducible : (u : Ty) -> (t : Closed u) -> Set
 Reducible O t = Trace (decompose t)
 Reducible (u => v) t
 = Pair (Trace (decompose t))
 ((x : Closed u) -> Reducible u x
 -> Reducible (Clapp t x))

37Sunday, March 25, 12

Finally, evaluation

 evaluate : Closed u -> Value u
 evaluate t =
 iterate (decompose t) (termination t)

38Sunday, March 25, 12

Plan of attack

Define one step of head reduction:

Decompose the term into a redex and
evaluation context;

Contract the redex;

Plug the result back into the context.

Iterated head reduction yields an evaluator.

Prove termination.

39Sunday, March 25, 12

What happened?

• Using typical programming idioms of
dependently typed programming...

• Precise data types;

• Views;

• Bove-Capretta.

• ... you can define programs with non-trivial
termination behaviour.

40Sunday, March 25, 12

The Krivine machine

• Formalizing Biernacka & Danvy’s derivation
of the Krivine machine is not so hard.

• Having an executable definition helps.

41Sunday, March 25, 12

Most of our implementations of the abstract
machines raise compiler warnings about non-
exhaustive matches. These are inherent to
programming abstract machines in an ML-like
language.

Conclusions

42Sunday, March 25, 12

Most of our implementations of the abstract
machines raise compiler warnings about non-
exhaustive matches. These are inherent to
programming abstract machines in an ML-like
language.

Conclusions

Agda is not an ML-like language.

42Sunday, March 25, 12

Most of our implementations of the abstract
machines raise compiler warnings about non-
exhaustive matches. These are inherent to
programming abstract machines in an ML-like
language.

Conclusions

43Sunday, March 25, 12

Most of our implementations of the abstract
machines raise compiler warnings about non-
exhaustive matches. These are inherent to
programming abstract machines in an ML-like
language.

Conclusions

Using dependent types exposes structure
that is not apparent in ML-like languages.

43Sunday, March 25, 12

