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(λ x . t0) t1 !  t0 {t1/x}

β reduction
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Motivation

• Implementing β-reduction through 
substitutions is a terrible idea!

• Instead, modern languages evaluate lambda 
terms using an abstract machine (tail-
recursive function)
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Who comes up with 
these things?
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Olivier Danvy
and his many students and collaborators
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Most of our implementations of the abstract 
machines raise compiler warnings about non-
exhaustive matches. These are inherent to 
programming abstract machines in an ML-like 
language – Mads Sig Ager, Dariusz Biernacki, 
Olivier Danvy, Jan Midtgaard
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Outline of the paper

• Define well-typed lambda terms;

• Implement a small step evaluator;

• Prove that it terminates;

• Apply program transformations to derive 
the Krivine machine.
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Outline of the paper

• Sketch how one might define a terminating 
evaluator for the simply typed lambda 
calculus in Agda.

• What are the problems? 

• What ‘design patterns’ help solve them?

talk
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Types
  data Ty : Set where
    O : Ty
    _=>_ : Ty -> Ty -> Ty

  el : U -> Set
  el O = Unit
  el (s => t) = el s -> el t

  Context : Set
  Context = List Ty
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Terms

data Term : Context -> Ty -> Set where
  Lam : Term (Cons u Γ) v 
      -> Term Γ (u => v)
  App : Term Γ (u => v) -> Term Γ u 
      -> Term Γ v
  Var : Ref Γ u -> Term Γ u
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Normalization-by-cheating

eval : Env Γ -> Term Γ u -> el u

eval env (Lam body)

  = \x -> eval (Cons x env) body  
eval env (App f x)

  = (eval env f) (eval env x)

  eval env (Var i) 
    = lookup i env
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Closed terms only
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Reduction rules
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Closed terms
data Closed : Ty -> Set where
  Closure : Term Γ u -> Env Γ 
          -> Closed u
  Clapp : Closed (u => v) -> Closed u 
        -> Closed v

data Env : Context -> Set where
  Nil : Env Nil
  _·_ : Closed u -> Env Γ 
      -> Env (Cons u Γ)
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Plan of attack

Define one step of head reduction:

Decompose the term into a redex and 
evaluation context;

Contract the redex;

Plug the result back into the context.

Iterated head reduction yields an evaluator.

Prove termination.
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Head reduction in 
three steps

Decompose the term into a redex and 
evaluation context;

Contract the redex;

Plug the result back into the context.
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Redex

data Redex : Ty -> Set where
  Lookup : Ref Γ u -> Env Γ -> Redex u
  App : Term Γ (u => v) -> Term Γ u 
      -> Env Γ -> Redex v
  Beta : Term (Cons u Γ) v -> Env Γ
       -> Closed u -> Redex v
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Contraction

contract : Redex u -> Closed u
contract (Lookup i env) = env ! i
contract (App f x env) = 
  Clapp (Closure f env) (Closure x env)
contract (Beta body env arg) =
  Closure body (arg · env)
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Head reduction in 
three steps

Decompose the term into a redex and 
evaluation context;

Contract the redex;

Plug the result back into the context.
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Evaluation contexts

data EvalContext : Ty -> Ty -> Set where
  MT : EvalContext u u
  ARG : Closed u -> EvalContext v w
      -> EvalContext (u => v) w

20Sunday, March 25, 12



Plug

plug : EvalContext u v -> 
       Closed u -> Closed v
plug MT f = f
plug (ARG x ctx) f = plug ctx (Clapp f x)
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Head reduction in 
three steps

Decompose the term into a redex and 
evaluation context;

Contract the redex;

Plug the result back into the context.
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Decomposition 
as a view

• Idea: every closed term is:

• a value;

• or a redex in some evaluation context.

• Define a view on closed terms. 

23Sunday, March 25, 12



Decomposition

data Decomposition : Closed u -> Set where
  Val : (t : Closed u) -> isVal t 
      -> Decomposition t
  Decompose : (r : Redex v) 
  -> (ctx : EvalContext v u) 
  -> Decomposition (plug ctx (fromRedex r))
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Decompose

decompose : (c : Closed u) ->
  Decomposition c
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Head reduction in 
three steps

Decompose the term into a redex and 
evaluation context;

Contract the redex;

Plug the result back into the context.
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Head-reduction

headReduce : Closed u -> Closed u
headReduce c with decompose c
... | Val val p = val 
... | Decompose redex ctx 
  = plug ctx (contract redex)
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Plan of attack

Define one step of head reduction:

Decompose the term into a redex and 
evaluation context;

Contract the redex;

Plug the result back into the context.

Iterated head reduction yields an evaluator.

Prove termination.
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Iterated head reduction

evaluate : Closed u -> Value u
evaluate c = iterate (decompose c)
  where
  iterate : Decomposition c -> Value u
  iterate (Val val p) = Val val p
  iterate (Decompose r ctx) 
    = iterate (decompose (plug ctx (contract r)))
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Iterated head reduction

evaluate : Closed u -> Value u
evaluate c = iterate (decompose c)
  where
  iterate : Decomposition c -> Value u
  iterate (Val val p) = Val val p
  iterate (Decompose r ctx) 
    = iterate (decompose (plug ctx (contract r)))
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Iterated head reduction

evaluate : Closed u -> Value u
evaluate c = iterate (decompose c)
  where
  iterate : Decomposition c -> Value u
  iterate (Val val p) = Val val p
  iterate (Decompose r ctx) 
    = iterate (decompose (plug ctx (contract r)))
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The Bove-Capretta
method

31Sunday, March 25, 12



Bove-Capretta
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Bove-Capretta

data Trace : Decomposition c -> Set where
  Done : (val : Closed u) -> (p : isVal val) 
       -> Trace (Val val p)
  Step : Trace (decompose (plug ctx (contract r))) 
       -> Trace (Decompose r ctx)
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Iterated head 
reduction, again

iterate : {u : Ty}  {c : Closed u} ->
  (d : Decomposition c) -> Trace d -> Value u
iterate (Val val p) Done = Val val p
iterate (Decompose r ctx) (Step step) =
  let d' = decompose (plug ctx (contract r)) in
  iterate d' step
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Plan of attack

Define one step of head reduction:

Decompose the term into a redex and 
evaluation context;

Contract the redex;

Plug the result back into the context.

Iterated head reduction yields an evaluator.

Prove termination.
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Nearly done

We still need to find a trace for every term...

   (c : Closed u) -> Trace (decompose c)
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Nearly done

We still need to find a trace for every term...

   (c : Closed u) -> Trace (decompose c)Fail
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Nearly done

We still need to find a trace for every term...

   (c : Closed u) -> Trace (decompose c)Fail
Yet we know that the simply typed lambda 

calculus is strongly normalizing...
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Logical relation

  Reducible : (u : Ty) -> (t : Closed u) -> Set
  Reducible O t = Trace (decompose t)
  Reducible (u => v) t 
    = Pair (Trace (decompose t))
           ((x : Closed u) -> Reducible u x
              -> Reducible (Clapp t x))
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Finally, evaluation

  evaluate : Closed u -> Value u
  evaluate t = 
    iterate (decompose t) (termination t)
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Plan of attack

Define one step of head reduction:

Decompose the term into a redex and 
evaluation context;

Contract the redex;

Plug the result back into the context.

Iterated head reduction yields an evaluator.

Prove termination.
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What happened?

• Using typical programming idioms of 
dependently typed programming...

• Precise data types;

• Views;

• Bove-Capretta.

• ... you can define programs with non-trivial 
termination behaviour.
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The Krivine machine

• Formalizing Biernacka & Danvy’s derivation 
of the Krivine machine is not so hard.

• Having an executable definition helps.
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Most of our implementations of the abstract 
machines raise compiler warnings about non-
exhaustive matches. These are inherent to 
programming abstract machines in an ML-like 
language.

Conclusions
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Most of our implementations of the abstract 
machines raise compiler warnings about non-
exhaustive matches. These are inherent to 
programming abstract machines in an ML-like 
language.

Conclusions

Agda is not an ML-like language.
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Most of our implementations of the abstract 
machines raise compiler warnings about non-
exhaustive matches. These are inherent to 
programming abstract machines in an ML-like 
language.

Conclusions
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Most of our implementations of the abstract 
machines raise compiler warnings about non-
exhaustive matches. These are inherent to 
programming abstract machines in an ML-like 
language.

Conclusions

Using dependent types exposes structure
that is not apparent in ML-like languages.
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