From Mathematics to Abstract Machine
 Wouter Swierstra MSFP 2012,Tallinn, Estonia

β reduction

$$
\left(\lambda x . \mathrm{t}_{0}\right) \mathrm{t}_{1} \longrightarrow \mathrm{t}_{0}\left\{\mathrm{t}_{1} / x\right\}
$$

Motivation

- Implementing β-reduction through substitutions is a terrible idea!
- Instead, modern languages evaluate lambda terms using an abstract machine (tailrecursive function)

Who comes up with these things?

Olivier Danvy

and his many students and collaborators

Most of our implementations of the abstract machines raise compiler warnings about nonexhaustive matches.These are inherent to programming abstract machines in an ML-like language - Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, Jan Midtgaard

Outline of the paper

- Define well-typed lambda terms;
- Implement a small step evaluator;
- Prove that it terminates;
- Apply program transformations to derive the Krivine machine.

Outline of the paper

- Sketch how one might define a terminating evaluator for the simply typed lambda calculus in Agda.
- What are the problems?
- What 'design patterns' help solve them?

Types

data Ty : Set where

$$
0 \text { : Ty }
$$

=> : Ty -> Ty -> Ty
el : U -> Set
el 0 = Unit
el (s => t) = el s -> el t

Context : Set
Context = List Ty

Terms

data Term ：Context－＞Ty－＞Set where
Lam ：Term（Cons ur）v
－＞Term 「（u＝＞v）
App ：Term 「（u＝＞v）－＞Term 「 u
－＞Term 「 v
Var ：Ref 「 u－＞Term 「 u

Normalization-by-cheating

eval : Env 「 -> Term 「 u -> el u eval env (Lam body)
$=$ \x -> eval (Cons x env) body
eval env (App f x)
= (eval env f) (eval env x)
eval env (Var i)
= lookup i env

Closed terms only

$$
E:=\square \mid E t
$$

LOOKUP $E\left\{i\left[c_{1}, c_{2}, \ldots c_{n}\right]\right\} \rightarrow E\left\{c_{i}\right\}$

$\mathrm{APP} \quad E\left\{\left(t_{0} t_{1}\right)[e n v]\right\} \rightarrow E\left\{\left(t_{0}[e n v]\right)\left(t_{1}[e n v]\right)\right\}$
Beta $E\{((\lambda t)[e n v]) c\} \rightarrow E\{t[c \cdot e n v]\}$

Reduction rules

Closed terms

data Closed ：Ty－＞Set where
Closure ：Term 「 u－＞Env 「
－＞Closed u
Clapp ：Closed（u＝＞v）－＞Closed u －＞Closed v
data Env ：Context－＞Set where
Nil ：Env Nil
＿．＿：Closed u－＞Env 「
－＞Env（Cons u 「）

Plan of attack

\square Define one step of head reduction:
\square Decompose the term into a redex and evaluation context;
\square Contract the redex;
\square Plug the result back into the context.
\square Iterated head reduction yields an evaluator.
\square Prove termination.

Head reduction in three steps

\square Decompose the term into a redex and evaluation context;
\square Contract the redex;
\square Plug the result back into the context.

Redex

data Redex ：Ty－＞Set where
Lookup ：Ref 「 u－＞Env 「－＞Redex u
App ：Term 「（u＝＞v）－＞Term 「 u
－＞Env 「－＞Redex v
Beta ：Term（Cons u 「）v－＞Env 「
－＞Closed u－＞Redex v

Contraction

contract : Redex u -> Closed u contract (Lookup i env) = env ! i contract (App f x env) = Clapp (Closure f env) (Closure x env) contract (Beta body env arg) =

Closure body (arg • env)

Head reduction in three steps

\square Decompose the term into a redex and evaluation context;
(]) Contract the redex;
\square Plug the result back into the context.

Evaluation contexts

data EvalContext : Ty -> Ty -> Set where
MT : EvalContext u u
ARG : Closed u -> EvalContext v w
-> EvalContext (u => v) w

Plug

plug : EvalContext u v ->
Closed u -> Closed v
plug MT $f=f$
plug (ARG $x \operatorname{ctx}) \mathrm{f}=\mathrm{plug} \mathrm{ctx}(\mathrm{Clapp} \mathrm{f} x$)

Head reduction in three steps

\square Decompose the term into a redex and evaluation context;
\square Contract the redex;
\square Plug the result back into the context.

Decomposition as a view

- Idea: every closed term is:
- a value;
- or a redex in some evaluation context.
- Define a view on closed terms.

Decomposition

data Decomposition : Closed u -> Set where
Val : (t : Closed u) -> isVal t
-> Decomposition t
Decompose : (r : Redex v)
-> (ctx : EvalContext v u)
-> Decomposition (plug ctx (fromRedex r))

Decompose

decompose : (c : Closed u) -> Decomposition c

Head reduction in three steps

\square Decompose the term into a redex and evaluation context;
(]) Contract the redex;
\square Plug the result back into the context.

Head-reduction

headReduce : Closed u -> Closed u headReduce c with decompose c
... | Val val p = val
... | Decompose redex ctx
= plug ctx (contract redex)

Plan of attack

(1) Define one step of head reduction:
\square Decompose the term into a redex and evaluation context;

- Contract the redex;
- Plug the result back into the context.
\square Iterated head reduction yields an evaluator.
\square Prove termination.

Iterated head reduction

evaluate : Closed u -> Value u evaluate c = iterate (decompose c)
where
iterate : Decomposition c -> Value u
iterate (Val val p) = Val val p
iterate (Decompose r ctx)
= iterate (decompose (plug ctx (contract r)))

Iterated head reduction

evaluate : Closed u -> Value u evaluate c = iterate (decompose c)
where
iterate : Decomposition c -> Value u
iterate (Val val p) = Val val p
iterate (Decompose r ctx)
= iterate (decompose (plug ctx (contract r)))

Iterated head reduction

evaluate : Closed u -> Value u
evaluate c = iterate (decompose c)
where
iterate : Decomposition c -> Value u
iterate (Val val p) = Val val p
iterate (Decompose r ctx)
= iterate (decompose (plug ctx (contract r)))

The Bove-Capretta method

$\overline{\text { terminates }(v)}$
$\frac{t \rightarrow t^{\prime} \quad \text { terminates }\left(t^{\prime}\right)}{\text { terminates }(t)}$

data Trace : Decomposition c -> Set where
Done : (val : Closed u) -> (p : isVal val)
-> Trace (Val val p)
Step : Trace (decompose (plug ctx (contract r)))
-> Trace (Decompose r ctx)

Iterated head

reduction, again

iterate : \{u : Ty\} \{c : Closed u\} ->
(d : Decomposition c) -> Trace d -> Value u
iterate (Val val p) Done = Val val p
iterate (Decompose r ctx) (Step step) =
let d' = decompose (plug ctx (contract r)) in
iterate d' step

Plan of attack

■ Define one step of head reduction:
\square Decompose the term into a redex and evaluation context;
(]) Contract the redex;
\square Plug the result back into the context.

- Iterated head reduction yields an evaluator.
\square Prove termination.

Nearly done

We still need to find a trace for every term...
(c : Closed u) -> Trace (decompose c)

Nearly done

We still need to find a tence for every term... (c : Closed
(decompose c)

Nearly done

We still need to find a tence for every term... (c : Closed (decompose c)

Yet we know that the simply typed lambda calculus is strongly normalizing...

Logical relation

Reducible : (u : Ty) -> (t : Closed u) -> Set
Reducible 0 t = Trace (decompose t)
Reducible (u => v) t

$$
\begin{aligned}
=\text { Pair } & (\text { Trace (decompose t)) } \\
& ((x \text { : Closed u) -> Reducible u x } \\
& \text {-> Reducible (Slap t x)) }
\end{aligned}
$$

Finally, evaluation

evaluate : Closed u -> Value u evaluate $\mathrm{t}=$
iterate (decompose t) (termination t)

Plan of attack

\square Define one step of head reduction:
\square Decompose the term into a redex and evaluation context;
(]) Contract the redex;

- Plug the result back into the context.
\square Iterated head reduction yields an evaluator.
\square Prove termination.

What happened?

- Using typical programming idioms of dependently typed programming...
- Precise data types;
- Views;
- Bove-Capretta.
- ... you can define programs with non-trivial termination behaviour.

The Krivine machine

- Formalizing Biernacka \& Danvy's derivation of the Krivine machine is not so hard.
- Having an executable definition helps.

Conclusions

Most of our implementations of the abstract machines raise compiler warnings about nonexhaustive matches.These are inherent to programming abstract machines in an ML-like language.

Conclusions

Most of our implementations of the abstract machines raise compiler warnings about nonexhaustive matches.These are inherent to programming abstract machines in an ML-like language.

Agda is not an ML-like language.

Conclusions

Most of our implementations of the abstract machines raise compiler warnings about nonexhaustive matches.These are inherent to programming abstract machines in an ML-like language.

Conclusions

Most of our implementations of the abstract machines raise compiler warnings about nonexhaustive matches.These are inherent to programming abstract machines in an ML-like language.

Using dependent types exposes structure that is not apparent in ML-like languages.

