
Auto in Agda
joint work with Pepijn Kokke

!
IFIP WG 2.1 #71

Zeegse, the Netherlands

Proofs & Programs

• In a language with dependent types, “proofs are
programs” and “types are propositions”

• Proof terms can be brittle and tedious to write.

Even

 data Even : ℕ → Set where
 Base : Even 0
 Step : Even n → Even (suc (suc n))
!
!

There’s a clear need for automation…

even1024 : Even 1024
even1024 = …

An alternative definition
data Empty : Set where
!
data True : Set where
 tt : True
!
even : ℕ -> Set
even zero = True
even (suc zero) = Empty
even (suc (suc n)) = even n
!
!!!
even1024 : even 1024
even1024 = tt

Proof-by-reflection

soundness : (n : ℕ) -> even n -> Even n
soundness zero e = Base
soundness (suc zero) ()
soundness (suc (suc n)) e = Step (soundness n e)
!
even1024 : Even 1024
even1024 = soundness 1024 tt

Even – again

even+ : Even n -> Even m -> Even (n + m)
even+ Base e2 = e2
even+ (Step e1) e2 = Step (even+ e1 e2)
!
simple : ∀ {n} → Even n → Even (n + 2)
simple e = …

Demo

Proof automation

• A single function for proof automation:
!
 auto : ℕ → HintDB → Term → Term

• Implemented in ‘safe’ Agda;

• Even if it may fail to produce the Term you were
hoping for…

How auto works

1. Quote the current goal;

2. Translate the goal to my own Term data type;

3. Run Prolog resolution with this Term as goal;

4. Build an Agda AST from this result;

5. Unquote the AST.

Proof automation in Agda

1. Quote the current goal;

2. Translate the goal to my own Term data type;

3. Run Prolog resolution with this Term as goal;

4. Build an Agda AST from this result;

5. Unquote the AST.

Terms and unification

data Term (n : ℕ) : Set where
 var : (x : Fin n) → Term n
 con : (s : TermName) (ts : List (Term n)) → Term n
!
unify : (t₁ t₂ : Term m) → Maybe (Subst m)
unify t₁ t₂ = unifyAcc t₁ t₂ nil
!
!
unifyAcc : (t₁ t₂ : Term m) → Subst m → Maybe (Subst m)

(Ignoring details about number of variables)

Prolog rules

record Rule (n : ℕ) : Set where
 constructor rule
 field
 conclusion : Term n
 premises : List (Term n)

A ‘hint database’ is a list of rules

Prolog resolution

while there are open goals
 apply each rule to try to resolve the next goal
 if this succeeds
 add premises of the rule to the open goals
 continue the resolution
 otherwise fail and backtrack

Resolution
data SearchSpace (m : ℕ) : Set where
 fail : SearchSpace m
 retn : Subst m → SearchSpace m
 step : (Rule → ∞ (SearchSpace m)) → SearchSpace m
!
resolveAcc : Maybe (Subst m) → List (Goal m) → SearchSpace m
resolveAcc nothing _ = fail
resolveAcc (just subst) [] = retn s
resolveAcc (just subst) (goal ∷ goals) = step next
 where
 next : Rule m → ∞ (SearchSpace m)
 next r =
 let subst’ = unifyAcc goal (conclusion r) subst in
 resolveAcc subst’ (premises r ++ goals)

!

Resolution

• It’s easy to kick off the resolution process:
!
 resolve : Goal m → SearchSpace m
 resolve g = resolveAcc (just nil) [g]!

• I’m ignoring the generation of free variables –
which makes things pretty messy…

• I haven’t said anything about the hint database yet.

Search trees

data SearchTree (A : Set) : Set where
 fail : SearchTree A
 retn : A → SearchTree A
 fork : List (∞ (SearchTree A)) → SearchTree A
!
!
toTree : Rules → SearchSpace m → SearchTree (Subst m)
toTree hints fail = fail
toTree hints (retn s) = retn s
toTree hints (step f) = fork (map (\r -> toTree (f r)) hints)

(Ignoring forcing and guardedness)

Alternatives
• Apply every rule at most once;

• Assign priorities to the order in which rules may be
applied;

• Limit the applications of some rules – like
transitivity.

• …

Finding solutions

• We can use a simple depth-bounded search
!
 dbs : (depth : ℕ) → SearchTree A → List A

• Or implement breadth-first search;

• Or any other traversal of the search tree.

Missing pieces
• Conversion from AgdaTerms to our Term type;

• Constructing hint databases;

• Building an AgdaTerm from a list of rules that have
been applied;

• Converting such a Term back to an AgdaTerm.

• Adding error messages.

Type classes for cheap!

Conclusions
• Lots of limitations:

• first-order;

• no information from local context;

• slow.

!• Proof automation need not be different from regular
programming.

