Datatype Generic Programming in F#

Ernesto Rodriguez and Wouter Swierstra

Workshop on Generic Programming, 2015

WGP '15

This talk

There are numerous libraries for generic programming in Haskell.
e How can we transfer this technology to other languages?
 What limitations do we encounter?

e Can we retain type safety?

WGP '15

About F#

e F#is a functional language, similar to ML

e Runs on the .NET platform

e Pragmatic combination language features, drawing from both
object oriented and functional languages.

WGP '15

Functional and object oriented

e inheritance and classes;

e reflection mechanism from .NET;

e parametric polymorphism:;

e ad-hoc polymorphism;

e algebraic data types and pattern matching;

e first-class functions...

WGP '15

Can we use these features to
Implement a library for datatype
generic programming in F#?

Datatype generic programming in Haskell

1. A representation type or universe

2. A methodology for defining functions by induction over this
universe

3. Automatically generated conversion functions converting user-
defined datatypes to their generic representation.

We'll start by reviewing the Regular library.

WGP '15

Regular: universe

The Regular universe defines a collection of types used to
represent simple algebraic data types:

data U t = U

data Ka t = K a

data L t =1 t

data (a :+: b) t = Inl a | Inr b
data (a :*: b) t = a :(*: b

WGP '15

Regular: defining generic functions

Generic functions are declared by introducing a new class:

class GSum f where
gsum : £ -> Int

And instances for the types we saw previously:

instance GSum (U t) where
gsum = 0

instance (GSum a, GSum b) => GSum (a :*: b) where
gsum (X :*: y) = gsum x + gsum vy

WGP '15

Regular: converting to the generic
representation

class Functor (PF a) => Regular a where
type PF :: * -> %
from : a -> PF a a
to : PF a a -> a

sum :: Regular a => a -> Int
sum X = gsum (from x)

Instances the Regular class for user-defined types are typically
generated using Template Haskell.

WGP '15

Porting these ideas to F#

To write a library for datatype generic programming in F# we'll
need to define the following three ingredients:

1. A representation type or universe

2. A methodology for defining functions by induction over this
universe

3. Automatically generated conversion functions converting user-
defined datatypes to their generic representation.

WGP '15

10

Representation types in F# - |

We will use an F# class to define our representation types:

[<AbstractClass>]
type Meta () = class end

We can now define subclasses for each of the type constructors we
wish to support in our universe.

WGP '15 11

Representation types in F# - I

All subclasses of the Meta class take an additional phantom type
argument, ty, recording the type being represented:

type UK ty>() =
class
inherit Meta()
end

type K< ty, x>(elem : "x) =
class
inherit Meta()
member self.Elem
with get() = elem
end

WGP '15

12

Representation types in F# - Il

type Id< ty>(elem: 'ty) =
class
inherit Meta()
self.Elem
with get() = elem
end

type Sum<'ty, 'a, b
when "a :> Meta
and b :> Meta>(
elem : Choice<'a, 'b>) =
class

inherit Meta()
member self.Elem

with get() = elem
end

Note that types stored in Sum or Prod must be subtypes of Meta.

WGP '15

13

Why do you need to use classes?

Defining generic functions

We would like to use F#'s ad-hoc overloading to define generic
functions, just as we used Haskell classes previously:

type Prod<'t, 'a,'b when 'a : (member GSum : int)
and 'b : (member GSum : int) > with

member self.GSum = self.E1.GSum + self.E2.GSum

Unfortunately, this style of generic function definition does not
work well...

WGP '15 15

Restriction's on ad-hoc overloading

e No overlapping instances

e F# needs to know statically how all overloading is resolved

e Member functions defined post-hoc with an extension are not
checked when solving member constraints

F#'s treatment of overloading is very different Haskell type classes

WGP '15 16

Our approach

Instead of using overloading, we provide an (abstract) class
FoldMeta that:

e collects the required definitions for the constructors of our
universe

e provides a function that servers as a workaround to handle some
of these limitations.

WGP '15 17

FoldMeta

AbstractClass
type FoldMeta< t, inp, out>() =

abstract FoldMeta : Meta * inp -> "out

abstract FoldMeta< ty> : Sum< ty,Meta,Meta> * "inp -> out
abstract FoldMeta< ty> : Prod< ty,Meta,Meta> * "inp -> "out
abstract FoldMeta< ty, a> : K< ty, a> * "inp -> out
abstract FoldMeta : Id< t> * "inp -> out

abstract FoldMeta< ty> : U< ty> ¥ "inp -> out

WGP '15 18

Defining GMap

type GMap< t, x>() =
class
inherit FoldMeta<
£
X => X,
Meta>()

end

WGP '15

19

Defining GMap - products

override x.FoldMeta< ty>
(v : Prod< ty,Meta,Meta>
E 1 'x -> 'x) =
Prod<Meta,Meta>(
X.FoldMeta(v.E1l,f),
X.FoldMeta(v.E2,f))
:> Meta

Note: we need to cast the result back to a value of type Meta

Also note: recursive calls happen on values of type Meta

WGP '15

20

Defining GMap - constants

We provide two definitions for the K type:

member x.FoldMeta< ty>(v : K<'ty, x>, £ ¢ "X->"x) =
K(f v.Elem) :> Meta

override x.FoldMeta<'ty, ‘a>(k : K<'ty, 'a>,f : “x -> “x) =
k :> Meta

The override is required and leaves the value unchanged;

The member function works specifically for values of type x and
applies the argument function.

WGP '15

21

Resolving overloading

Recall how recursive calls happen on values of type Meta - but we
have only provided definitions for specific types, such as sums,
products, and constants.

Similarly, we have provided more than one definition for constants.

How is this overloading resolved?

WGP '15

22

FoldMeta again

The FoldMeta class has one additional function:
FoldMeta : Meta * inp -> out

This method should not be overridden by the user.

Instead, it handles the selection of the right overloaded method.

WGP '15

23

Implementation

e The implementation of this FoldMeta function is fairly messy.

e |t uses .NET reflection to check the type of its Meta argument

e And calls the most method with the most specific that will still
accept this argument.

e The good news: users never have to see the reflection code.

e The bad news: there is a run-time penalty in every step of the
execution of a generic function

WGP '15

24

Porting these ideas to F#

To write a library for datatype generic programming in F# we'll
heed

to define the following three ingredients:

1. A representation type or universe

2. A methodology for defining functions by induction over this
universe

3. Automatically generated conversion functions converting user-
defined datatypes to their generic representation.

WGP '15

25

Generating conversions

We can generate conversions using the .NET reflection mechanism.

Every .NET value has a member function:

GetType : unit -> Type

F# extends the Type class with specific information for algebraic
data types.

This allows us to lookup the constructors of a data type, their
types, etc.

WGP '15 26

Generating conversions

In contrast to Haskell, this meta-programming is done at run time.
It is untyped and requires a lot of boilerplate code.
It requires a lot of .NET expertise.

It's not cross platform.

WGP '15

27

Generating conversions

Nonetheless, we can provide an automatically generated
conversion function to the Meta representation type:

type Generic< t>() =
member x.To : "t -> Meta
member x.From : Meta -> 't

WGP '15

28

Top-level function

Now we can use the GMap :> FoldMeta class to define the
following |gmap| function:

member x.gmap(x : t,f : X -> Xx) =
Let gen = Generic< x>()
X.FoldMeta(gen.To x,1f)
|> gen.From

WGP '15

29

Taking stock

1. A representation type or universe
2. A methodology for defining generic functions

3. Automatically generated conversion functions converting user-
defined datatypes to their generic representation.

WGP '15

30

Universe definition

We can mimic the Regular universe using classes and subtyping.

|

This allows us to represent the same collection of types in F# as
you can in Haskell.

Allows us to exploit subtyping - bundling the type constructors,
rather than define them individually as in Haskell.

WGP '15 31

Defining generic functions

e The generic functions themselves are 'unityped' - they all
manipulate Meta values

e This may cause run-time failures when converting back to user-
defined data types.

e We can only handle folds over generic types.

e But we can provide variations of FoldMeta to work on more
than one argument, generate Meta values, etc.

WGP '15

32

Generating conversions

We can use .NET to generate conversion functions.
It's a bit messy, but it works.

These conversion functions are generated at run-time -
memoization might really help improve performance.

WGP '15

33

Advantages over Regular

A generic function is determined by our FoldMeta class.

We can use OO overriding and inheritance to create variations of
existing generic functions:

type ShallowGMap< t, a>(f : a -> a) =
inherit GMap< ' t, a>(f)
override self.GMap(id : Id< t>) = 1id

WGP '15

34

Conclusions

e We can port many ideas from the datatype generic programming
In Haskell to F#

e But we sometimes end up fighting the type system, rather than
exploiting it.

e The library provides a more lightweight alternative to existing

approaches to generic programming that rely heavily on
reflection.

WGP '15 35

Future work

 We could use reflection (once again) to perform static analysis on

compiled assemblies to check the type safety of generic
definitions.

e Memoization of conversion functions

e Explore alternative approaches to datatype generic programming
that might be easier to adopt in F#.

WGP '15 36

Uniplate

Using this library, we can support other styles of generic
programming such as Uniplate.

uniplate : Uniplate a => a -> ([a], [a] -> a)

Several traversals, transformations and generic functions can be
built on top of this.

WGP '15

37

Uniplate example

type Arith =

Op of string*Arith¥*Arith
Neg of Arith

Val of int

Let (c,f) = uniplate (Op ("add",Neg (Val 5),Val 38))

-- prints [Neg (Val 5);Val 8]
printf "%A" c

-- prints Op ("add",Val 1,Val 2)
printf "%A" (£ [Val 1;Val 2])

WGP '15

38

Uniplate in F

We can define uniplate using two generic helper functions:
e collecting subtrees

e reconstructing trees

WGP '15

39

Collect subtrees - |

type Collect< t>() =
inherit FoldMeta< t, t list>()

override self.FoldMeta< ty, a>(_ :

override self.FoldMeta< ty>(_ :

K< ty, a>) = []

U< ty>) = []

override self.FoldMeta(i : Id< t>) = [1.Elem]

WGP '15

40

Collecting subtrees - Il

override self.FoldMeta< ty>(
c : Sum< ty,Meta,Meta>) =
match c.Elem with
| ChoicelOf2 m -> self.Collect m
| Choice20f2 m -> self.Collect m

override self.FoldMeta< ty>(
c : Prod< ty,Meta,Meta>) =
List.concat< t> [
self.Collect c.E1
; self.Collect c.E2Z2]

WGP '15

Constructing subtrees - |

type Instantiate< t>(values' : 't list) =
inherit FoldMeta< t,Meta>()
Let mutable values = values’

Let pop () = match values with
| X::Xs -> values <- Xs;Some X

| [j.—> None

override self.FoldMeta(i : Id< t>) =
match pop () with
| Some x -> Id< t>(x)
| None -> failwith "Not enough args"”
:> Meta

WGP '15

42

Constructing subtrees - |

override self.FoldMeta< ty>(
p: Prod< ty,Meta,Meta>) =
Prod(self.FoldMeta p.El,self.FoldMeta p.E2)
:> Meta

override self.FoldMeta< ty>(

s . Sum< ty,Meta,Meta>) =

match s with

| ChoicelOf2 m -> Sum< ty,Meta,Meta>(
self.FoldMeta m |> ChoicelOf2)

| Choice20f2 m -> Sum< ty,Meta,Meta> (
self.FoldMeta m |> Choice20f2)

:> Meta

WGP '15

43

If you squint enough,

It looks just like Haskell

Questions?

