
....

[Faculty of Science
Information and Computing

Sciences]

. 1

Lazy, staged binary decision diagrams
Wouter Swierstra

....

[Faculty of Science
Information and Computing

Sciences]

. 2

Programming with dependent types

Languages such as Agda, Coq, and Idris provide a single
framework for programming and proving.

To prove a theorem corresponds to writing a program of
with the correct type.

These proof terms can be complex and hard to write.

… but sometimes they can be computed!

....

[Faculty of Science
Information and Computing

Sciences]

. 3

Proof by reflection: example

data IsEven : Nat -> Set where
Base : IsEven 0
Step : IsEven n -> IsEven (Succ (Succ n))

easy : IsEven 4
easy = Step (Step Base)

harder : IsEven 1024

....

[Faculty of Science
Information and Computing

Sciences]

. 3

Proof by reflection: example

data IsEven : Nat -> Set where
Base : IsEven 0
Step : IsEven n -> IsEven (Succ (Succ n))

easy : IsEven 4
easy = Step (Step Base)

harder : IsEven 1024

....

[Faculty of Science
Information and Computing

Sciences]

. 4

Proof by reflection: example

Instead, we can define a function that computes which
numbers are even:

even? : Nat -> Bool

And a proof that this function is sound with respect to our
previous notion of evenness:

sound : (n : Nat) -> even? n == True -> IsEven n

....

[Faculty of Science
Information and Computing

Sciences]

. 5

Proof by reflection: example

Using this soundness result, it is trivial to prove large
numbers are even:

harder : IsEven 1024
harder = sound 1024 refl

Of course, this example only works for closed terms but the
technique extends to many different domains, including
equations over rings, set membership, or any decidable
property.

....

[Faculty of Science
Information and Computing

Sciences]

. 6

Application: Π-ware

Together with Joao Pizani Flor, we've been designing an
embedded language for hardware description and
verification, Π-ware.

data C : Nat -> Nat -> Set where
...

Using all of Agda's abstractions, we can define various
combinators and circuit generators:

adder : (n : Nat) -> C (2 * n) (n + 1)

....

[Faculty of Science
Information and Computing

Sciences]

. 7

Verification: aims

Existing DSLs based on functional languages, such as Lava,
use such combinators to define circuits…

… but verification is done by calling automated theorem
provers on circuits of fixed size.

Can we not provide an inductive proof that the circuit
generators are correct?

....

[Faculty of Science
Information and Computing

Sciences]

. 8

Verification: challenges

Unsurprisingly, such proofs involve lots of calculations over
boolean expressions.

For small n, we can exhaustively test 2n possible inputs.

And show that exhaustive testing implies proof.

But this does not scale.

....

[Faculty of Science
Information and Computing

Sciences]

. 8

Verification: challenges

Unsurprisingly, such proofs involve lots of calculations over
boolean expressions.

For small n, we can exhaustively test 2n possible inputs.

And show that exhaustive testing implies proof.

But this does not scale.

....

[Faculty of Science
Information and Computing

Sciences]

. 9

Smarter verification

The `industry standard' for efficient algorithms over such
expressions is binary decision diagrams (BDDs).

Can we use such BDDs to performe efficient proofs by
reflection?

....

[Faculty of Science
Information and Computing

Sciences]

. 10

A first approximation…

We can begin by studying binary decision trees:

data Tree : Set where
O : Tree
I : Tree
Node : Tree -> Var -> Tree -> Tree

Given such a tree and an assignment of values to variables,
you can traverse the tree to evaluate the corresponding
boolean expression.

....

[Faculty of Science
Information and Computing

Sciences]

. 11

....

[Faculty of Science
Information and Computing

Sciences]

. 12

Decision trees

It is easy enough to compute a decision tree corresponding
to a boolean expression.

And prove they are equivalent.

But what about real BDDs?

....

[Faculty of Science
Information and Computing

Sciences]

. 13

Reduced ordered binary decision diagrams

ROBDDs are much harder. The place the following
additional constraints on binary decision trees:

▶ There is an ordering on variables that is respected by all
paths from the root.

▶ No node has identical left and right subtrees
▶ Any two nodes with equal subtrees are equal

How can we represent such directed acyclic graphs in a
functional setting?

....

[Faculty of Science
Information and Computing

Sciences]

. 14

....

[Faculty of Science
Information and Computing

Sciences]

. 15

Lazyness

Instead of working with pointers explicitly, we can rely on
the host languages laziness to capture the desired sharing.

let t = Node (Node 1 y2 10) x2 (Node 0 y2 1)
in ... t ... t

Agda's metaprogramming framework lets you generate
such programs from a boolean expression.

But to prove soundness, we need to reason about
metaprograms…

....

[Faculty of Science
Information and Computing

Sciences]

. 16

Challenges & Caveats

Many algorithms computing with BDDs are inherently
imperative, assigning unique names to nodes.

The usual algorithms to construct BDDs rely on hash tables
to detect sharing, flattening out any structure.

This makes verification of the construction much harder.

We've started exploring this idea in Template Haskell, but
don't have meaningful performance benchmarks yet.

The performance of Agda's compile-time evaluation and
sharing are hard to predict. This may not be an
improvement over brute-force testing.

