
.... 1

Π-Ware: A Hardware Description Language
embedded in Agda

Wouter Swierstra
Dept. of Information and Computing Sciences

Utrecht University

joint work with Joao Pizani Flor

.... 2

Hardware design

▶ Low-level programming of complex tasks, often used in
safety critical domains.

▶ In contrast to software, it’s hard to release bugfixes –
circuit designs must be correct

.... 3

Hardware languages

VHDL & Verilog are the market leaders

▶ Some issues:
▶ Language fragmentation: several languages and tools

cobbled together.
▶ Biggest divide: synthesis/sim. vs. formal verification

How can we use functional programming and dependent types
in this domain?

.... 4

Historical perspective

There are numerous domain-specific languages using functional
programming technology to design and verify circuits.

Mary Sheeran’s invited talk at ICFP last year gives a great
overview.

One successful example: Lava (Bjesse et al.)

▶ Deep embedding in Haskell that relies on observable
sharing.

▶ Clever combinators to define circuit generators and
complex connection patterns

▶ Simulation and testing using tools like QuickCheck.
▶ Verification is done by calling an (automated) theorem

prover.

.... 5

Π-Ware

▶ An Agda EDSL for circuits
▶ Very low level of abstraction

▶ A form of architectural combinator calculus
▶ Trivial mapping to circuit schematics/netlists

▶ Advantages from Agda
▶ Types ensure basic sanity conditions for circuits
▶ A single language for the definition and verification of

circuits.
▶ Our goal is not to replace the current generation of

hardware languages, but rather to understand how our
technology can be used to tackle this problem.

.... 6

What a Π-Ware circuit looks like
▶ 2-to-1 multiplexer (”inverted” if-then-else circuit)

▶ 3 inputs (S, A, B), 1 output (Z)
▶ Boolean formula: Z = (A ∧ ¬S) ∨ (B ∧ S)

▶ Schematic diagram

mux

∧ℂ

∧ℂ

¬ℂ

fo
rk
⤨

S

A

B

S

A

B

S

A

B

∨ℂ Z

snd⤨

fst⤨

▶ Π-Ware model
▶

𝗆𝗎𝗑 ∶ ∀ {𝑠} → ℂ {𝑠} 𝟥 𝟣
𝗆𝗎𝗑 = 𝖿𝗈𝗋𝗄×⤨

⟫ (¬ℂ ∥ 𝖿𝗌𝗍⤨𝟣 ⟫ ∧ℂ) ∥ (𝗂𝖽⤨𝟣 ∥ 𝗌𝗇𝖽⤨𝟣 ⟫ ∧ℂ)
⟫ ∨ℂ

.... 7

Circuit datatype

▶ Deep-embedded DSL: a datatype for circuits (ℂ)
𝖽𝖺𝗍𝖺 ℂ ∶ ℕ → ℕ → 𝖲𝖾𝗍

▶ Indexed by two natural numbers, corresponding to the
number of input and output wires.

▶ We’ll cover the constructors one by one.

.... 8

Circuit constructors
Basic gate

Gate g : ℂ (ins g) (outs g)

g : G ins g outs g
Gate g

▶ 𝖦𝖺𝗍𝖾 ∶ (𝑔 ∶ 𝖦) → ℂ (|𝗂𝗇| 𝑔) (|𝗈𝗎𝗍| 𝑔)

▶ The language is parametrized by a gate type, 𝖦,
corresponding to the fundamental building blocks of our
circuits.

▶ Each gate has a basic interface (|𝗂𝗇|, |𝗈𝗎𝗍|), counting the
number of inputs and outputs;

▶ Together with an associated behaviour
▶ Such gates may correspond to the familiar boolean

operations, but you are free to choose your own.

.... 9

Circuit constructors

Sequential composition

c₁
i m

c₂
m o

c₁ : ℂ i m
c₂ : ℂ m o

c₁ ⟫ c₂ : ℂ i o

▶ Connects outputs of c1 to inputs of c2
▶ _⟫_ ∶ ℂ 𝑖 𝑚 → ℂ 𝑚 𝑜 → ℂ 𝑖 𝑜

▶ The types ensure the interfaces line up.

.... 10

Circuit constructors

Parallel composition

c₁
i₁ o₁

c₂
o₂i₂

o₁+o₂i₁+i₂
c₁ : ℂ i₁ o₁
c₂ : ℂ i₂ o₂

c₁ | c₂ : ℂ (i₁+i₂) (o₁+o₂)

▶ Passes different parts of the input to different subcircuits
▶ _∥_ ∶ ℂ 𝑖1 𝑜1 → ℂ 𝑖2 𝑜2 → ℂ (𝑖1 + 𝑖2) (𝑜1 + 𝑜2)

.... 11

Circuit constructors

i o : ℕ
f : Fin o → Fin i
Plug f : ℂ i o

Plug f
i o

▶ Explicit rerouting of wires
𝖯𝗅𝗎𝗀 ∶ (𝖥𝗂𝗇 𝑜 → 𝖥𝗂𝗇 𝑖) → ℂ 𝑖 𝑜

▶ This is used for swapping over wires, duplicating inputs,
etc.

▶ Type forbids short-circuits (one output associated with
multiple inputs) and floating wires (one output with no
input).

.... 12

Semantics

▶ As we have a deep embedding, we can define many
different interpreters for our circuits: (translation to
VHDL, computation of area, maximal delay, etc.)

▶ We’ll focus on functional semantics
⟦_⟧ ∶ ℂ 𝑖 𝑜 → (𝖵𝖾𝖼 𝖡𝗈𝗈𝗅 𝑖 → 𝖵𝖾𝖼 𝖡𝗈𝗈𝗅 𝑜)

▶ Note: you can choose other atomic types than booleans if
you want.

.... 13

Functional stateless semantics

⟦_⟧ ∶ ℂ 𝑖 𝑜 → (𝖵𝖾𝖼 𝖡𝗈𝗈𝗅 𝑖 → 𝖵𝖾𝖼 𝖡𝗈𝗈𝗅 𝑜)

▶ ⟦ 𝖦𝖺𝗍𝖾 𝑔 ⟧: Use function associated with 𝑔
▶ ⟦ 𝑐1 ⟫ 𝑐2 ⟧: ⟦ 𝑐2 ⟧ ∘ ⟦ 𝑐1 ⟧
▶ ⟦ 𝑐1 ∥ 𝑐2 ⟧: 𝗎𝗇𝖼𝗎𝗋𝗋𝗒 _⧺_ ∘ 𝗆𝖺𝗉× ⟦ 𝑐1 ⟧ ⟦ 𝑐2 ⟧ ∘ 𝗌𝗉𝗅𝗂𝗍𝖠𝗍 𝑖1
▶ ⟦ 𝖯𝗅𝗎𝗀 𝑓 ⟧: each position 𝑝 in the output, maps to (𝑓 𝑝) in

the input

.... 14

Parallel prefix circuits

We applied all of this in a case study on parallel prefix circuits,
inspired by a paper by Ralf Hinze.

▶ Parallel-Prefix Circuits compute scans
▶ Given: (x1, x2, x3, … , xn)
▶ Will compute (x1, x1 ⊕ x2, x1 ⊕ x2 ⊕ x3, … , x1 ⊕ ⋯ ⊕ xn)

▶ When the binary operation _⊕_ is associative, we have
some flexibility on how to compute the subexpressions of
x1 ⊕ x2 ⊕ ⋯ ⊕ xn

.... 15

Parallel-Prefix Circuits

▶ Example of PPC: serial scan

▶ Another example: minimal-depth scan

Can we show these two circuits are equivalent?

.... 16

When are two circuits equivalent?

▶ When they display the same (functional) behaviour: given
equal inputs, the circuits will produce equal outputs.

▶ However, if propositional equality as it is usually defined in
Agda can only be used to compare two terms of the same
type.

▶ We may define two circuit (generators) differently:
(𝑐1 ∶ ℂ 𝑛 (𝟤 ∗ 𝑛)) and
(𝑐2 ∶ ℂ 𝑛 (𝑛 + 𝑛))

Despite the different types, they might have the same
behaviour…

.... 17

Vector equivalence

We can define a heterogeneous equivalence relation on vectors:

▶ two empty vectors are equivalent;
▶ two non-empty vectors are equivalent if their heads are

propositionally equal and their tails are equivalent.

This corresponds to the usual propositional equality, but lets us
at least discuss the possibility of two vectors of different types
aspiring to be equal.

We consider two circuits equivalent, (_≋_), when two
equivalent input vectors, are mapped to equivalent output
vectors.1

1There’s a caveat…

.... 18

Circuit properties

▶ Using this definition of _≋_, we can prove some that our
circuits have some basic algebraic structure:

▶ Sequential monoid (_⟫_, 𝗂𝖽⤨)
▶ Parallel monoid (_∥_, 𝗇𝗂𝗅⤨)
▶ Exchange law: (𝑐1 ∥ 𝑐2) ⟫ (𝑑1 ∥ 𝑑2) ≋ (𝑐1 ⟫ 𝑑1) ∥ (𝑐2 ⟫ 𝑑2)

.... 19

Parallel-Prefix Circuits

▶ We formalized/proven in Π-Ware:
▶ What does it mean to compute a scan
▶ All PPCs compute scans
▶ Thus all PPCs are behaviourally equivalent
▶ PPCs can be combined to form bigger PPCs

▶ Paper detailing Π-Ware and this case study
▶ Submitted to the TYPES2015 workshop
▶ http://gitlab.com/joaopizani/piware-paper-2015

http://gitlab.com/joaopizani/piware-paper-2015

.... 20

Sequential and combinational circuits

The circuits we have seen so far are combinational – the result
of the current clock cycle only depends on the current inputs.

As soon as we allow loops in our circuits, things become more
interesting.

Sequential circuits may store state.

.... 21

A new circuit constructor

Loops

i
c

i+l o+l

clkreset

inout
l l

o

c : ℂ (i+l) (o+l)

DelayLoop : ℂ i o

▶ 𝖣𝖾𝗅𝖺𝗒𝖫𝗈𝗈𝗉 ∶ ℂ (𝑖 + 𝑙) (𝑜 + 𝑙) → ℂ 𝑖 𝑜
▶ This allows the next output to depend on previous inputs.

.... 22

Semantics of sequential circuits

The type of our semantic function changes:

⟦_⟧ ∶ ℂ 𝑖 𝑜 → 𝖲𝗍𝗋𝖾𝖺𝗆(𝖵𝖾𝖼 𝖡𝗈𝗈𝗅 𝑖) → 𝖲𝗍𝗋𝖾𝖺𝗆(𝖵𝖾𝖼 𝖡𝗈𝗈𝗅 𝑜)

The semantics of all our previous constructors can be lifted
pointwise.

The loop case is more interesting…

.... 23

Semantics of delay loops

In Haskell we might write something like:
run :: Circuit -> Stream (Word i) -> Stream (Word o)
run (Loop c) is =

let (os,ss) = run c (is,0:ss)

in os

This definition, however, is not obviously correct (structurally
recursive/guarded corecursive) – and not accepted by Agda.

Instead, we require that the body of the loop is combinational.

.... 24

Semantics of delay loops

We revise our definition of the delay loop constructor:

𝖣𝖾𝗅𝖺𝗒𝖫𝗈𝗈𝗉 ∶ (𝑐 ∶ ℂ (𝑖 + 𝑙) (𝑜 + 𝑙)) → (𝗂𝗌𝖢𝗈𝗆𝖻 𝑐) → ℂ 𝑖 𝑜

The proof 𝗂𝗌𝖢𝗈𝗆𝖻 𝑐 guarantees that we can simulate the loop
body as a function between words (rather than streams of
words).

This restriction allows us to give a suitable stream coalgebra,
used to generate the stream of outputs.

.... 25

Stateful circuit: 𝗋𝖾𝗀

s s

reg clkreset

inout
s s

muxrotL fork

o
i
s
ℓ

regCore

i
ℓ

o

▶ A 1-bit register (1-bit input/output)
▶ The state is also 1-bit wide
▶ Core of the transition function: 𝗆𝗎𝗑 to select

▶ Π-Ware definitions:
▶ 𝗋𝖾𝗀𝖢𝗈𝗋𝖾 = (𝖯𝗅𝗎𝗀 𝗋𝗈𝗍𝖫𝟥) ⟫ 𝗆𝗎𝗑 ⟫ 𝖿𝗈𝗋𝗄𝟤
▶ 𝗋𝖾𝗀 = 𝖣𝖾𝗅𝖺𝗒𝖫𝗈𝗈𝗉 𝗋𝖾𝗀𝖢𝗈𝗋𝖾

.... 26

By induction: regN

We can of course generalize 𝗋𝖾𝗀 to work on 𝑛 bits.

▶ Π-Ware definitions:
▶ 𝗋𝖾𝗀𝗇−𝗋𝖾𝗀𝗌 𝑛 = 𝗉𝖺𝗋𝗌 𝑛 𝗋𝖾𝗀
▶ 𝗋𝖾𝗀𝗇 𝑛 = 𝗋𝖾𝗀𝗇−𝖽𝗂𝗌𝗍𝗋𝗂𝖻𝗎𝗍𝖾 𝑛 ⟫ (𝖾𝗊𝟣 𝑛 ⟫ 𝗋𝖾𝗀𝗇−𝗋𝖾𝗀𝗌 𝑛 ⟫ 𝖾𝗊𝟤 𝑛)

▶ Annoying plugs to complete the definition:
▶ 𝗋𝖾𝗀𝗇−𝖽𝗂𝗌𝗍𝗋𝗂𝖻𝗎𝗍𝖾: replicates and intersperses the “load” bit
▶ Equality plugs: 𝖾𝗊𝟣 and 𝖾𝗊𝟤

▶ Do not rearrange wires: no computational effect
▶ “Convince” Agda that we can feed (n + n) wires into a

circuit that accepts (n ∗ 2) inputs

.... 27

Coalgebraic semantics properties

▶ The coalgebraic semantics extends the stateless semantics
▶ If ⟦ 𝑐 ⟧ = 𝑓 then, (∀ 𝑥𝑠 → ⟦ 𝑐 ⟧𝜔 𝑥𝑠 ≈ 𝗆𝖺𝗉 𝑓 𝑥𝑠)

▶ Composition properties:
▶ Sequential

▶ ⟦ 𝑐 ⟫ 𝑑 ⟧𝜔 𝑥𝑠 ≈ ⟦ 𝑑 ⟧𝜔 (⟦ 𝑐 ⟧𝜔 𝑥𝑠)
▶ Parallel

▶ ⟦ 𝑐 ∥ 𝑑 ⟧𝜔 (𝗓𝗂𝗉 _++_ 𝑥𝑠 𝑦𝑠) ≈ 𝗓𝗂𝗉 _++_ (⟦ 𝑐 ⟧𝜔 𝑥𝑠) (⟦ 𝑑 ⟧𝜔 𝑦𝑠)

.... 28

Some register properties

▶ We formalized the properties of registers, characterizing
state the behaviour of registers (cf. Plotkin and Power
Notions of Computation Determine Monads)

▶ Proven for both 𝗋𝖾𝗀 and 𝗋𝖾𝗀𝖭

.... 29

Future work

▶ We’d like to look into larger stateful case studies (CPUs,
pipelining transformations, etc.)

▶ Higher-level typed language: shuffling about natural
numbers is no fun.

▶ The plugs give a ‘nameless’ representation of variable –
we’d like something a bit easier to use.

▶ Iteratively refine complex circuit specifications to more
primitive gates.

