
[Faculty of Science
Information and Computing Sciences]

1

From proposition to program
Embedding the refinement calculus in Coq

Wouter Swierstra Joao Alpuim
Utrecht University

[Faculty of Science
Information and Computing Sciences]

2

The dream of the 70’s

Instead of writing programs, we should derive a executable
program from its specification.

[Faculty of Science
Information and Computing Sciences]

3

The refinement calculus

The refinement calculus provides a precise logic, defining
when such a derivation is valid.

In other words, it describes how to compute an
implementation from a specification.

[Faculty of Science
Information and Computing Sciences]

4

Research goals

I The refinement calculus mixes specifications and
programs.

I Proof assistants based on type theory provide a single
framework for proving and programming.

I Can we use such proof assistants calculate programs
from their specification?

[Faculty of Science
Information and Computing Sciences]

5

Specifications

Specifications are typically given in the form of a precondition
and postcondition.

The specification [p, q] is satisfied by a program that, provided
the precondition p holds initially, terminates in a state where
the postcondition q holds.

[Faculty of Science
Information and Computing Sciences]

6

Refinement

The central notion of the refinement calculus is that of
program refinement,

p1 v p2

This refinement holds precisely when

∀P, wp(p1, P) ⇒ wp(p2, P)

This notion of refinement can be applied both to programs
and specifications.

Intuitively, when p2 refines p1 we may think of p2 as ‘more
specific’ than p1.

[Faculty of Science
Information and Computing Sciences]

7

Refinement calculations

Given a specification S , we can iteratively refine it:

S v P1 v ... v Pn v C

Here S is a specification of the form [p, q] and C is a piece of
executable code. The intermediate programs Pi are a mix of
code and specifications.

[Faculty of Science
Information and Computing Sciences]

8

Refinement laws

Rather than prove every step of such a calculation correct in
terms of weakest precondition semantics, there are numerous
derived laws.

Lemma (skip)

If pre ⇒ post, then [pre, post] v skip

Lemma (Following assignment)

For any term E ,

[pre, post] v [pre, post[w\E]]; w ::= E

Note: Deciding how to apply these laws requires creativity!

[Faculty of Science
Information and Computing Sciences]

9

Refinement calculations: example

[x = X ∧ y = Y , x = Y ∧ y = X]

v { by the following assignment law }

[x = X ∧ y = Y , t = Y ∧ y = X]; x ::= t

v { by the following assignment law }

[x = X ∧ y = Y , t = Y ∧ x = X]; y ::= x; x ::= t

v { by the following assignment law }

[x = X ∧ y = Y , y = Y ∧ x = X]; t ::= y; y ::= x; x ::= t

v { by the law for skip }

skip ; t ::= y; y ::= x; x ::= t

[Faculty of Science
Information and Computing Sciences]

10

Refinement on paper

Calculating programs from their specification on paper has its
drawbacks:

I Complex derivations require a great deal of bookkeeping
– and it’s easy to make mistakes.

I Upon completion, you still need to transcribe the derived
program to a programming language.

Can we do better?

[Faculty of Science
Information and Computing Sciences]

11

The Coq proof assistant

The interactive proof assistant Coq:

I based on a type theory with dependent types;
I a small functional language Gallina;
I many proof tactics that allow the user to construct

complex proofs interactively.

[Faculty of Science
Information and Computing Sciences]

12

This work

Our paper shows how to embed the refinement calculus in
the proof assistant Coq, enabling us to:

I state and prove refinement laws;
I use such laws to interactively derive a program from its

specification;
I use the full power of Coq to automate proofs and guide

the development;
I generate an executable program from a completed

derivation.

[Faculty of Science
Information and Computing Sciences]

13

Basic definitions

We can represent specifications as a pair of a pre- and
postcondition:

Definition Pred (A : Type) : Type := A -> Type.

Record PT : Type :=

MkPT { pre : Pred S;

post : forall s : S, pre s -> Pred S}.

Note: the postcondition is a relation between an input state s

that satisfies the precondition and the output state.

[Faculty of Science
Information and Computing Sciences]

14

Semantics

For each such a pair of precondition and postcondition, we
can define the usual semantics as predicate transformer:

Definition semantics (pt : PT) : Pred S -> Pred S

:= fun P s =>

{ p : pre pt s

& forall s’, post pt s p s’ -> P s’}.

[Faculty of Science
Information and Computing Sciences]

15

Refinement

Next we can define a Refinement relation on PT, pt1 v pt2:

I the precondition of pt1 implies that of pt2
I the postcondition of pt2 implies that of pt1

And we can show that it is sound and correct with respect to
the weakest precondition semantics.

[Faculty of Science
Information and Computing Sciences]

16

Derived laws

Even though we have not introduced the WHILE language yet,
we can already prove refinement properties, such as:

Lemma strengthenPost :

(forall (s s’ : S), Q1 s s’ -> Q2 s s’) ->

Refinement [P , Q2] [P , Q1].

Using the definitions so far, we can formulate and prove
typical refinement rules.

[Faculty of Science
Information and Computing Sciences]

17

The WHILE language

S ::= skip
| S1; S2
| x ::= a
| if e then S1 else S2
| while e do S
| [p , q]

Expressions consist of variables, constants, and various
numeric or boolean operators.

We can define a suitable abstract syntaxt tree for expressions
and programs as an inductive data type in Coq.

[Faculty of Science
Information and Computing Sciences]

18

Semantics of WHILE

An inductive data type represents the abstract syntax of our
language, but what about the semantics?

And how can we relate this to the notion of refinement?

[Faculty of Science
Information and Computing Sciences]

19

Overview

So far we have defined:

I Pre- and postconditions PT

I A refinement relation on PT

I Syntax of WHILE

Still missing:

I A semantics of WHILE, mapping to PT

I Extending our refinement relation to work between
programs

[Faculty of Science
Information and Computing Sciences]

20

Semantics of WHILE

To define the semantics of WHILE programs, we associate a
suitable pre- and postcondition with each syntactic construct.

For example, for the SKIP command we choose:

SKIP{ True} skip {s = s’}

[Faculty of Science
Information and Computing Sciences]

21

Semantics of While

The rule for sequential composition is slightly more
complicated:

{P1} c1 {Q1} {P2} c2 {Q2}
{P1 s ∧ ∀t, Q1 s t → P2 t} c1; c2 {∃(t : S), Q1 s t ∧ Q2 t s′}

[Faculty of Science
Information and Computing Sciences]

22

Do these definitions make sense?

Remember, we are free to choose the pre- and
postconditions of every syntactic construct.

How can you be sure that your choices are correct?

We have proven that for every syntactic construct, our choice
of PT coincides with the usual weakest precondition
semantics for that construct.

This provides at least some evidence that our choices for pre-
and postcondition are sound with respect to the usual
semantics.

[Faculty of Science
Information and Computing Sciences]

23

Overview

So far we have defined:

I Pre- and postconditions PT

I A refinement relation on PT

I Syntax of WHILE

I A semantics of WHILE, mapping to PT

Still missing:

I Extending our refinement relation to work between
programs

[Faculty of Science
Information and Computing Sciences]

24

Refinement of programs

I We have defined a refinement relation on pre- and
postcondition pairs PT

I We have defined semantics for the WHILE language as a
value of type PT

I Together, this gives us a refinement relation on WHILE

programs.

[Faculty of Science
Information and Computing Sciences]

25

Refinement proofs

I We can prove various properties of our refinement
relation (e.g., transitivity)

I We can prove typical refinement calculus laws (e.g., the
following assignment rule)

I Using these lemmas, we can transcribe refinement
calculations from paper to our theorem prover.

[Faculty of Science
Information and Computing Sciences]

26

Non-interactive refinement

Example: formalising the derivation of swap:

Definition swap : While :=

skip; t := x; x := y; y := t;

Definition swapSpec : PT := ...

Lemma swapDerivation :

Refinement swapSpec swap.

...

But this is not yet playing to Coq’s strengths as an interactive
theorem prover. . .

[Faculty of Science
Information and Computing Sciences]

27

Interactive refinement

Instead of assuming we know the program we want to end up
with a priori, we formulate our derivations as follows:

Lemma swapDerivation :

{ c : While | Refinement swapSpec c

/\ isExecutable c}.

...

Now we need to rephrase the usual refinement lemmas to
work on goals of this form.

For example, the ‘following assignment rule’ fills in part of the
program c, but leaves a goal to complete the remainder of the
derivation (hopefully with an easier refinement problem left).

[Faculty of Science
Information and Computing Sciences]

28

Guiding principles

I All laws have the same general form of conclusion:

{c : While | Refinement spec c /\ isExecutable c}

I There is at least one lemma implementing the refinement
rule associated with the different language constructs.
For compound statements there are usual several
variants.

I The order of hypotheses is chosen to maximize the
chance of early failure.

I Never assume anything about the shape of the pre- or
postcondition of the specifications involved.

[Faculty of Science
Information and Computing Sciences]

29

Validation

I We have done non-trivial case study, deriving a program
that does a binary search for the integer square root –
‘our system works’

I We have shown that the semantics induced by the
refinement relation coincide with their usual axiomatic
(weakest precondition) semantics – ‘our definitions are
correct’

[Faculty of Science
Information and Computing Sciences]

30

Further work

I Combine with existing work on separation logic in Coq;
I Exhance the (simplistic) model of the heap with richer

types, such as arrays and objects;
I Extend the WHILE language with more constructs

[Faculty of Science
Information and Computing Sciences]

31

