
Faculty of Science
Information and Computing Sciences

1

Embedding the refinement calculus in Coq
How to teach an old Coq new tricks

Wouter Swierstra Joao Alpuim

Faculty of Science
Information and Computing Sciences

2

The scope of WG 2.1

▶ Continuing responsibility for Algol 60 and Algol 68.

▶ The calculation of programs from specifications

▶ The investigation of software support for program
derivation.

Faculty of Science
Information and Computing Sciences

2

The scope of WG 2.1

▶ Continuing responsibility for Algol 60 and Algol 68.

▶ The calculation of programs from specifications

▶ The investigation of software support for program
derivation.

Faculty of Science
Information and Computing Sciences

2

The scope of WG 2.1

▶ Continuing responsibility for Algol 60 and Algol 68.

▶ The calculation of programs from specifications

▶ The investigation of software support for program
derivation.

Faculty of Science
Information and Computing Sciences

2

The scope of WG 2.1

▶ Continuing responsibility for Algol 60 and Algol 68.

▶ The calculation of programs from specifications

▶ The investigation of software support for program
derivation.

Faculty of Science
Information and Computing Sciences

3

Program calculation - The dream of the 70s

Instead ofwriting programs, we should derive a executable
program from its specification.

The refinement calculus provides a precise logic, defining
when such a derivation is valid.

In other words, it describes how to compute an
implementation from a specification.

Faculty of Science
Information and Computing Sciences

3

Program calculation - The dream of the 70s

Instead ofwriting programs, we should derive a executable
program from its specification.

The refinement calculus provides a precise logic, defining
when such a derivation is valid.

In other words, it describes how to compute an
implementation from a specification.

Faculty of Science
Information and Computing Sciences

4

Research questions

▶ The refinement calculus mixes specifications and
programs.

▶ Interactive proof assistants based on type theory
provide a single framework for proving and
programming.

▶ Can we use such proof assistants calculate programs
from their specification?

Faculty of Science
Information and Computing Sciences

5

Refinement 101

Faculty of Science
Information and Computing Sciences

6

Specifications

Specifications are typically given in the form of a
precondition and postcondition.

The specification [p, q] is satisfied by a program that,
provided the precondition p holds initially, terminates in a
state where the postcondition q holds.

Faculty of Science
Information and Computing Sciences

7

Refinement

The central notion of the refinement calculus is that of
program refinement,

p1 ⊑ p2

This refinement holds precisely when

∀P, wp(p1, P) ⇒ wp(p2, P)

This notion of refinement can be applied both to programs
and specifications.

Intuitively, when p2 refines p1 wemay think of p2 as ‘more
specific’ than p1.

Faculty of Science
Information and Computing Sciences

8

Refinement calculations

Starting from a specification S, we can iteratively refine it:

S ⊑ P1 ⊑ ... ⊑ Pn ⊑ C

Here S is a specification of the form [p, q] and C is a piece of
executable code. The intermediate programs Pi are a mix of
code and specifications.

Faculty of Science
Information and Computing Sciences

9

Refinement laws

Rather than prove every step of such a calculation correct in
terms of weakest precondition semantics, there are
numerous derived laws.

Lemma (skip)

If pre ⇒ post, then [pre, post] ⊑ skip

Lemma (Following assignment)

For any term E, we have
[pre, post] ⊑ [pre, post[w\E]]; w ::= E

Note: Deciding how to apply these laws requires creativity!

Faculty of Science
Information and Computing Sciences

9

Refinement laws

Rather than prove every step of such a calculation correct in
terms of weakest precondition semantics, there are
numerous derived laws.

Lemma (skip)

If pre ⇒ post, then [pre, post] ⊑ skip

Lemma (Following assignment)

For any term E, we have
[pre, post] ⊑ [pre, post[w\E]]; w ::= E

Note: Deciding how to apply these laws requires creativity!

Faculty of Science
Information and Computing Sciences

10

Refinement calculations: example

[x = X ∧ y = Y, x = Y ∧ y = X]

⊑ { by the following assignment law }

[x = X ∧ y = Y, t = Y ∧ y = X]; x ::= t

⊑ { by the following assignment law }

[x = X ∧ y = Y, t = Y ∧ x = X]; y ::= x; x ::= t

⊑ { by the following assignment law }

[x = X ∧ y = Y, y = Y ∧ x = X]; t ::= y; y ::= x; x ::= t

⊑ { by the law for skip }

skip ; t ::= y; y ::= x; x ::= t

Faculty of Science
Information and Computing Sciences

10

Refinement calculations: example

[x = X ∧ y = Y, x = Y ∧ y = X]

⊑ { by the following assignment law }

[x = X ∧ y = Y, t = Y ∧ y = X]; x ::= t

⊑ { by the following assignment law }

[x = X ∧ y = Y, t = Y ∧ x = X]; y ::= x; x ::= t

⊑ { by the following assignment law }

[x = X ∧ y = Y, y = Y ∧ x = X]; t ::= y; y ::= x; x ::= t

⊑ { by the law for skip }

skip ; t ::= y; y ::= x; x ::= t

Faculty of Science
Information and Computing Sciences

10

Refinement calculations: example

[x = X ∧ y = Y, x = Y ∧ y = X]

⊑ { by the following assignment law }

[x = X ∧ y = Y, t = Y ∧ y = X]; x ::= t

⊑ { by the following assignment law }

[x = X ∧ y = Y, t = Y ∧ x = X]; y ::= x; x ::= t

⊑ { by the following assignment law }

[x = X ∧ y = Y, y = Y ∧ x = X]; t ::= y; y ::= x; x ::= t

⊑ { by the law for skip }

skip ; t ::= y; y ::= x; x ::= t

Faculty of Science
Information and Computing Sciences

10

Refinement calculations: example

[x = X ∧ y = Y, x = Y ∧ y = X]

⊑ { by the following assignment law }

[x = X ∧ y = Y, t = Y ∧ y = X]; x ::= t

⊑ { by the following assignment law }

[x = X ∧ y = Y, t = Y ∧ x = X]; y ::= x; x ::= t

⊑ { by the following assignment law }

[x = X ∧ y = Y, y = Y ∧ x = X]; t ::= y; y ::= x; x ::= t

⊑ { by the law for skip }

skip ; t ::= y; y ::= x; x ::= t

Faculty of Science
Information and Computing Sciences

10

Refinement calculations: example

[x = X ∧ y = Y, x = Y ∧ y = X]

⊑ { by the following assignment law }

[x = X ∧ y = Y, t = Y ∧ y = X]; x ::= t

⊑ { by the following assignment law }

[x = X ∧ y = Y, t = Y ∧ x = X]; y ::= x; x ::= t

⊑ { by the following assignment law }

[x = X ∧ y = Y, y = Y ∧ x = X]; t ::= y; y ::= x; x ::= t

⊑ { by the law for skip }

skip ; t ::= y; y ::= x; x ::= t

Faculty of Science
Information and Computing Sciences

11

Refinement on paper

Calculating programs from their specification on paper has
its drawbacks:

▶ Complex derivations require a great deal of
bookkeeping – and it’s easy to make mistakes.

▶ Upon completion, you still need to transcribe the
derived program to a programming language.

Can we do better?

Faculty of Science
Information and Computing Sciences

12

Embedding the refinement calculus in Coq

Faculty of Science
Information and Computing Sciences

13

The Coq proof assistant

The interactive proof assistant Coq:

▶ based on a type theory with dependent types;
▶ a small functional language Gallina;
▶ many proof tactics that allow the user to construct
complex proofs interactively.

Faculty of Science
Information and Computing Sciences

14

This work

Our paper shows how to embed the refinement calculus in
the proof assistant Coq, enabling us to:

▶ state and prove refinement laws;
▶ use such laws to interactively derive a program from its
specification;

▶ use the full power of Coq to automate proofs and guide
the development;

▶ generate an executable program from a completed
derivation.

Faculty of Science
Information and Computing Sciences

15

Basic definitions

We can represent specifications as a pair of a pre- and
postcondition:

Definition Pred (A : Type) : Type := A -> Type.

Record PT (A : Type) : Type :=
MkPT { pre : Pred S;

post : ∀ s : S, pre s -> Pred (A × S)}

Note: the postcondition is a relation between an input state
s that satisfies the precondition, the final result returned
and the output state.

Faculty of Science
Information and Computing Sciences

16

Refinement

We can assign a weakest precondition semantics to pre- and
postcondition pairs PT as predicate transformers.

Next we can define a Refinement relation on PT, written
pt1 ⊑ pt2:

▶ the precondition of pt1 implies that of pt2

▶ the postcondition of pt2 implies that of pt1

And we can show that it is sound and complete with respect
to the weakest precondition semantics.

Faculty of Science
Information and Computing Sciences

17

Derived laws

We can already prove general properties of refinements,
such as:

Lemma strengthenPost :
(∀ s x s', Q1 s (x,s') -> Q2 s (x,s')) ->
[P , Q2] ⊑ [P , Q1].

But we haven’t said anything about our programs yet.

Faculty of Science
Information and Computing Sciences

17

Derived laws

We can already prove general properties of refinements,
such as:

Lemma strengthenPost :
(∀ s x s', Q1 s (x,s') -> Q2 s (x,s')) ->
[P , Q2] ⊑ [P , Q1].

But we haven’t said anything about our programs yet.

Faculty of Science
Information and Computing Sciences

18

Syntax

We can describe the syntax of the various effects using a
Coq data type.

Inductive Term (a : Type) : Type :=
| New : v -> (Ptr -> Term a) -> Term a
| Read : Ptr -> (v -> Term a) -> Term a
| Write : Ptr -> v -> Term a -> Term a
| While : (S -> S -> Prop) -> (S -> bool) ->

Term unit -> Term a -> Term a
| Spec : PT a -> Term a
| Return : a -> Term a.

For now, we assume a fixed type for representing addresses
(Ptr) and values stored on the heap (v).

Faculty of Science
Information and Computing Sciences

19

Semantics?

An inductive data type represents the abstract syntax of our
language, but what about the semantics?

And how can we relate this to the notion of refinement?

Faculty of Science
Information and Computing Sciences

20

Semantics

To define the semantics of terms, we associate a suitable
pre- and postcondition with each syntactic construct.

Fixpoint semantics (t: Term a) : PT a :=
match t with
| Spec s => s
...

Most constructs follow the familiar rules for the semantics
of loops and state, even if they are ‘bottom-up’.

Faculty of Science
Information and Computing Sciences

21

(Read our paper at your leisure)

Faculty of Science
Information and Computing Sciences

22

Refinement of programs

▶ We have defined a refinement relation on pre- and
postcondition pairs PT

▶ We have defined a semantics for terms, mapping each
term to a value of type PT.

▶ Together, this gives us a refinement relation on terms.

Faculty of Science
Information and Computing Sciences

23

Recap

So far we have defined:

▶ Pre- and postconditions PT (with their semantics as
predicate transformers)

▶ A refinement relation on PT
▶ A syntax of our terms
▶ A semantics, mapping terms to PT
▶ A notion of refinement on terms using these semantics
and the refinement relation on PT.

Faculty of Science
Information and Computing Sciences

24

Proof engineering

Faculty of Science
Information and Computing Sciences

25

Refinement proofs

▶ We can prove various properties of our refinement
relation (e.g., transitivity)

▶ We can prove typical refinement calculus laws (e.g., the
following assignment rule)

▶ Using these lemmas, we can transcribe refinement
calculations from paper to our theorem prover.

Faculty of Science
Information and Computing Sciences

26

Non-interactive refinement

Example: formalizing the derivation of swap:

Definition swap : Term :=
skip; t := x; x := y; y := t;

Definition swapSpec : PT := ...

Lemma swapDerivation :
swapSpec ⊑ swap.
Proof.
...

But this is not yet playing to Coq’s strengths as an
interactive theorem prover…

Faculty of Science
Information and Computing Sciences

26

Non-interactive refinement

Example: formalizing the derivation of swap:

Definition swap : Term :=
skip; t := x; x := y; y := t;

Definition swapSpec : PT := ...

Lemma swapDerivation :
swapSpec ⊑ swap.
Proof.
...

But this is not yet playing to Coq’s strengths as an
interactive theorem prover…

Faculty of Science
Information and Computing Sciences

27

Interactive refinement

Instead of assuming we know the program we want to end
up with a priori, we formulate our derivations as follows:

Lemma swapDerivation :
{ c : Term | swapSpec ⊑ c

/\ isExecutable c}.

Now we need to rephrase the usual refinement lemmas to
work on goals of this form.

For example, the ‘following assignment rule’ fills in part of
the program c, but leaves a goal to complete the remainder
of the derivation (hopefully with an easier refinement
problem left).

Faculty of Science
Information and Computing Sciences

28

Guiding principles

▶ All laws have the same general form of conclusion:

{c : Term | spec ⊑ c /\ isExecutable c}

▶ There is at least one lemma implementing the
refinement rule associated with the different language
constructs. For compound statements (if, while,
sequential composition) there are usual several variants.

▶ The order of hypotheses is chosen to maximize the
chance of early failure.

▶ Never assume anything about the shape of the pre- or
postcondition of the specifications involved.

Faculty of Science
Information and Computing Sciences

29

Example: writeLemma

Lemma writeLemma
(ptr : Ptr) (y : v) (spec : PT a) (t : Term a)
(H : ...)
(Step : Spec [... , ...] ⊑ t)
: Spec spec ⊑ Write b ptr y t.

▶ H states the requirement that the precondition of spec
implies that ptr is a valid address;

▶ The Step proof is the ‘continuation’ of the refinement
development, where the state has been updated
accordingly.

Faculty of Science
Information and Computing Sciences

30

Adding automation

We have defined a collection of tactics that let you apply
such lemmas (and automate some of the associated book
keeping);

Ltac WRITE ptr v :=
eapply (writeSpec ptr v);
simpl_goal.

Here simpl_goal is a custom tactic that unfolds the
definition of refinement, splits any conjunction assumptions,
substitutes equalities in our context, triggers beta reduction,
etc.

Faculty of Science
Information and Computing Sciences

31

Example: swap

Definition swapRefinement (P Q : Ptr) :
{c : Term unit & SWAP P Q ⊑ c}.

Proof.
READ Q x.
NEW x T.
READ P y.
WRITE Q y.
READ T z.
WRITE P z.
RETURN tt.
(* Two simple proofs *)
* ... (* lookup P s = lookup Q s' *)
* ... (* lookup Q s = lookup P s' *)

Qed.

Faculty of Science
Information and Computing Sciences

32

Extraction

Given any refinement development proving

{c : Term | spec ⊑ c /\ isExecutable c}

we can project out the Term and generate OCaml/Haskell
code for it.

We can write a small interpreter in OCaml/Haskell that maps
our Write statements to assignments, etc.

Faculty of Science
Information and Computing Sciences

33

Further support

This encourages a ‘forward’ development – but we can
equally well use the following assignment rule to refine the
‘end’ of the program.

We can check the remaining specification at any point – and
apply weakening/strengthening rules to keep things tidy.

We can split a complex specification into separate subgoals
and combine the resulting developments – this is where a
proof assistant really helps.

Faculty of Science
Information and Computing Sciences

34

Proof debugging

There are many more advanced libraries for reasoning about
stateful computations in Coq that provide:

▶ better proof automation;
▶ richer (separation) logics;
▶ smarter heap models;
▶ …

But if you have written a program, and you get stuck during
its verification with incomprehensible open subgoals, there’s
very little support for debugging the verification effort.

Faculty of Science
Information and Computing Sciences

34

Proof debugging

There are many more advanced libraries for reasoning about
stateful computations in Coq that provide:

▶ better proof automation;
▶ richer (separation) logics;
▶ smarter heap models;
▶ …

But if you have written a program, and you get stuck during
its verification with incomprehensible open subgoals, there’s
very little support for debugging the verification effort.

Faculty of Science
Information and Computing Sciences

35

Validation

▶ We have shown that the semantics induced by the
refinement relation coincide with their usual axiomatic
weakest precondition semantics.

It works in theory.1

▶ Several case studies, deriving a program that does a
binary search for the integer square root and (the heart
of) a union-find data structure.

It works in practice.2

1 For a suitably definition of theory.

2 For a suitably definition of practice.

Faculty of Science
Information and Computing Sciences

35

Validation

▶ We have shown that the semantics induced by the
refinement relation coincide with their usual axiomatic
weakest precondition semantics.

It works in theory.1

▶ Several case studies, deriving a program that does a
binary search for the integer square root and (the heart
of) a union-find data structure.

It works in practice.2

1 For a suitably definition of theory.

2 For a suitably definition of practice.

Faculty of Science
Information and Computing Sciences

35

Validation

▶ We have shown that the semantics induced by the
refinement relation coincide with their usual axiomatic
weakest precondition semantics.

It works in theory.1

▶ Several case studies, deriving a program that does a
binary search for the integer square root and (the heart
of) a union-find data structure.

It works in practice.2

1 For a suitably definition of theory.

2 For a suitably definition of practice.

Faculty of Science
Information and Computing Sciences

36

Further work

▶ Piggyback on existing Coq developments;
▶ Does the general approach extends to other effects?

Faculty of Science
Information and Computing Sciences

37

Questions?

