
Faculty of Science
Information and Computing Sciences

1

Type directed diffing of structured data
Victor Cacciari Miraldo, Pierre-Evariste Dagand and

Wouter Swierstra

Faculty of Science
Information and Computing Sciences

2

The diff utility

The Unix diff utility compares two files line-by-line,
computing the smallest number of insertions and deletions
to transform one into the other.

It was developed as far back as 1976 – but still forms the
heart of many modern version control systems such as git,
mercurial, svn, and many others.

Faculty of Science
Information and Computing Sciences

3

Example: comparing two files

jabber.txt

’Twas brillig, and the slithy toves
Waved to Mars, where a robot roves;
Did gyre and gimble in the wabe;
And the mome raths outgrabe.

wocky.txt

’Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.

Faculty of Science
Information and Computing Sciences

4

Example: comparing two files

’Twas brillig, and the slithy toves
- Waved to Mars, where a robot roves;

Did gyre and gimble in the wabe;
+ All mimsy were the borogoves,

And the mome raths outgrabe.

The diff utility computes a patch, that can be used to
transform the one file into the other.

Faculty of Science
Information and Computing Sciences

5

Smallest edit script

Crucially, diff always computes the smallest patch –
minimizing the number of insertions and deletions.

In other words, it tries to preserve as much information as
possible.

But sometimes it still doesn’t do a very good job.

Faculty of Science
Information and Computing Sciences

5

Smallest edit script

Crucially, diff always computes the smallest patch –
minimizing the number of insertions and deletions.

In other words, it tries to preserve as much information as
possible.

But sometimes it still doesn’t do a very good job.

Faculty of Science
Information and Computing Sciences

5

Smallest edit script

Crucially, diff always computes the smallest patch –
minimizing the number of insertions and deletions.

In other words, it tries to preserve as much information as
possible.

But sometimes it still doesn’t do a very good job.

Faculty of Science
Information and Computing Sciences

6

Example: comma separated values

bibliography.csv

Lewis Carroll, The alphabet cipher
Lewis Carroll, The game of logic
Lewis Carroll, The hunting of the snark

How would this file change if I add publication dates?

Faculty of Science
Information and Computing Sciences

7

Example: comma separated values

- Lewis Carroll, The alphabet cipher
+ Lewis Carroll, The alphabet cipher, 1868
- Lewis Carroll, The game of logic
+ Lewis Carroll, The game of logic, 1887
- Lewis Carroll, The hunting of the snark
+ Lewis Carroll, The hunting of the snark, 1876

Adding a new column changes every line in our original file.

Where conceptually, we are not modifying any existing data.

Not all data is best represented by a list of lines!

This is particularly important when using diff to compare
source code.

Faculty of Science
Information and Computing Sciences

7

Example: comma separated values

- Lewis Carroll, The alphabet cipher
+ Lewis Carroll, The alphabet cipher, 1868
- Lewis Carroll, The game of logic
+ Lewis Carroll, The game of logic, 1887
- Lewis Carroll, The hunting of the snark
+ Lewis Carroll, The hunting of the snark, 1876

Adding a new column changes every line in our original file.

Where conceptually, we are not modifying any existing data.

Not all data is best represented by a list of lines!

This is particularly important when using diff to compare
source code.

Faculty of Science
Information and Computing Sciences

7

Example: comma separated values

- Lewis Carroll, The alphabet cipher
+ Lewis Carroll, The alphabet cipher, 1868
- Lewis Carroll, The game of logic
+ Lewis Carroll, The game of logic, 1887
- Lewis Carroll, The hunting of the snark
+ Lewis Carroll, The hunting of the snark, 1876

Adding a new column changes every line in our original file.

Where conceptually, we are not modifying any existing data.

Not all data is best represented by a list of lines!

This is particularly important when using diff to compare
source code.

Faculty of Science
Information and Computing Sciences

8

What is the diff over structured data?

Faculty of Science
Information and Computing Sciences

9

Questions

▶ How can we represent a family of data types?
▶ How can we represent patches on these data types?
▶ How can we compute a patch between two values?

Faculty of Science
Information and Computing Sciences

10

Questions

▶ How can we represent a family of data types?
▶ How can we represent patches on these data types?
▶ How can we compute a patch between two values?

Faculty of Science
Information and Computing Sciences

11

Universe of discourse

We will use Agda as our metalanguage to answer these
questions and start by fixing a ‘sums of products’ universe:

data Atom : Set where
K : U -> Atom
I : Atom

Prod : Set
Prod = List Atom

Sum : Set
Sum = List Prod

Here we assume some ‘base universe’ U, storing the atomic
types such as integers, characters, etc.

Faculty of Science
Information and Computing Sciences

12

Semantics

We can interpret these types as pattern functors:

elA : Atom -> (Set -> Set)
elA I X = X
elA (K u) X = elU u

elP : Prod -> (Set -> Set)
elP [] X = Unit
elP (a :: as) X = Pair (elA alpha X) (elP pi X)

elS : Sum -> (Set -> Set)
elS [] X = Empty
elS (p :: ps) X = Either (elP p X) (elS ps X)

Faculty of Science
Information and Computing Sciences

13

Fixpoints

Given any element of our ‘sums of products’ universe, we
can compute the corresponding pattern functor.

Taking the least fixpoint of this functor allows us to tie the
recursive knot:

data Fix (s : Sum) : Set where
<_> : elS s (Fix s) -> Fix s

Faculty of Science
Information and Computing Sciences

14

Example: 2-3 trees

We can represent 2-3-trees defined as follows:

data Tree : Set where
leaf : Tree
2-node : Nat -> Tree -> Tree -> Tree
3-node : Nat -> Tree -> Tree -> Tree -> Tree

by the following sum-of-products:

tree23F : Sum
tree23F = let leafT = []

node2T = [K NAT , I , I]
node3T = [K NAT , I , I , I]

in [leafT , node2T , node3T]

Faculty of Science
Information and Computing Sciences

15

Questions

▶ How can we represent a family of data types?
▶ How can we represent patches on these data types?
▶ How can we compute a patch between two values?

Faculty of Science
Information and Computing Sciences

16

2-3-trees

treeA = 2-node 7 t1 t2

treeB = 3-node 12 (2-node 7 t1 leaf) leaf leaf

What edit script should transform treeA to treeB?

It is not just a list of insertions and deletions!

We can insert new constructors, modify values stored in the
tree, delete subtrees, or copy over existing data.

We will use a type indexed data type to account for changes.

Faculty of Science
Information and Computing Sciences

16

2-3-trees

treeA = 2-node 7 t1 t2

treeB = 3-node 12 (2-node 7 t1 leaf) leaf leaf

What edit script should transform treeA to treeB?

It is not just a list of insertions and deletions!

We can insert new constructors, modify values stored in the
tree, delete subtrees, or copy over existing data.

We will use a type indexed data type to account for changes.

Faculty of Science
Information and Computing Sciences

17

Representing diffs

Our universe consists of three separate layers:

▶ sums
▶ products
▶ atomic values

We’ll define what it means to modify each of these layers –
from these pieces we can define our overall type for diffs.

Faculty of Science
Information and Computing Sciences

18

Spines: changes to sums

Given two arbitrary tree structures, x and y, we can identify
the following three cases:

1. x and y are equal;

2. x and y the same outermost constructor, but are not
equal trees;

3. x and y have a different outermost constructor.

To represent patches, we need a data type that describes
these three cases.

But what information should each constructor record?

Faculty of Science
Information and Computing Sciences

18

Spines: changes to sums

Given two arbitrary tree structures, x and y, we can identify
the following three cases:

1. x and y are equal;

2. x and y the same outermost constructor, but are not
equal trees;

3. x and y have a different outermost constructor.

To represent patches, we need a data type that describes
these three cases.

But what information should each constructor record?

Faculty of Science
Information and Computing Sciences

19

Spines

Assuming that we know what patches on atoms (pAt) and
products (pAl) are we can define:

data S (σ : Sum) : Set where
Scp : S σ
Scns : (C : Constr σ)

-> All pAt (fields C)
-> S σ

Schg : (C1 C2 : Constr σ)
-> pAl (fields C1) (fields C2)
-> S σ

We still need to define how to diff products and atoms.

Faculty of Science
Information and Computing Sciences

20

Alignments: changes to products

If we have reconciled the choice of constructor, how to we
compare the constructor fields?

Each value constructed in our universe has a list of fields –
the product structure.

Given two such lists, we need to compare them somehow.

Yet these fields may store values of very different types!

The good news, however, is that we can reuse ideas from
the classic diff algorithm at this point.

Faculty of Science
Information and Computing Sciences

20

Alignments: changes to products

If we have reconciled the choice of constructor, how to we
compare the constructor fields?

Each value constructed in our universe has a list of fields –
the product structure.

Given two such lists, we need to compare them somehow.

Yet these fields may store values of very different types!

The good news, however, is that we can reuse ideas from
the classic diff algorithm at this point.

Faculty of Science
Information and Computing Sciences

20

Alignments: changes to products

If we have reconciled the choice of constructor, how to we
compare the constructor fields?

Each value constructed in our universe has a list of fields –
the product structure.

Given two such lists, we need to compare them somehow.

Yet these fields may store values of very different types!

The good news, however, is that we can reuse ideas from
the classic diff algorithm at this point.

Faculty of Science
Information and Computing Sciences

21

Alignments: changes to products

To describe a change from one list of constructor fields to
another, we require an edit script that:

▶ copies over fields;
▶ deletes fields;
▶ inserts new fields.

Faculty of Science
Information and Computing Sciences

22

Alignments

data Al : Prod → Prod → Set where
A0 : Al At [] []
AX : At α → Al π2 π1 → Al At (α :: π2) (α :: π1)
Adel : elA a → Al π2 π1 → Al (α :: π2) π1
Ains : elA a → Al π2 π1 → Al π2 (α :: π1)

A value of type Al π2 π1 prescribes which fields of one
constructor are matched with which fields of another.

Faculty of Science
Information and Computing Sciences

23

Atoms

Finally, we still need to handle our atomic values.

For constant types, we can check if they are equal or not.

But what about recursive subtrees?

Faculty of Science
Information and Computing Sciences

23

Atoms

Finally, we still need to handle our atomic values.

For constant types, we can check if they are equal or not.

But what about recursive subtrees?

Faculty of Science
Information and Computing Sciences

24

Handling recursive data types

So far our spines compare the outermost constructors.

Oftentimes, you may want to delete certain constructors
(exposing subtrees) or insert new constructors.

We cannot handle such changes with the data types we have
seen so far…

Faculty of Science
Information and Computing Sciences

25

Accounting for recursion

Our final patch type identifies three cases:

1. The insertion of a new constructor, together with
all-but-one of its fields;

2. The deletion of the outermost constructor, together
with all-but-one of its fields;

3. A choice of spine, alignment, and a patch on atomic
values;

The first two require additional information – a context – to
point outwhere to insert/delete a subtree.

The last point is quite subtle: all our definitions of spines,
alignments and atomic patches were parametrized by how
to handle recursive occurrences – here we tie the recursive
knot!

Faculty of Science
Information and Computing Sciences

25

Accounting for recursion

Our final patch type identifies three cases:

1. The insertion of a new constructor, together with
all-but-one of its fields;

2. The deletion of the outermost constructor, together
with all-but-one of its fields;

3. A choice of spine, alignment, and a patch on atomic
values;

The first two require additional information – a context – to
point outwhere to insert/delete a subtree.

The last point is quite subtle: all our definitions of spines,
alignments and atomic patches were parametrized by how
to handle recursive occurrences – here we tie the recursive
knot!

Faculty of Science
Information and Computing Sciences

26

Applying patches

We can define generic operations – such as patch application
– that applies a patch to a given tree:

apply : Patch → Fix σ → Maybe (Fix σ)

This patch is guaranteed to preserve types.

It may still fail – when encountering an unexpected
constructor or atomic value – but it will never produce
ill-formed data.

Faculty of Science
Information and Computing Sciences

27

Questions

▶ How can we represent a family of data types?
▶ How can we represent patches on these data types?
▶ How can we compute a patch between two values?

Faculty of Science
Information and Computing Sciences

28

Computing patches

There may be many different patches, transforming one
value into another.

The diff utility has a clear definition of ‘best’ patch: always
choose the patch with the least number of
deletions/insertions.

This works because every line is assumed to have
comparable length; lines are never nested.

It is not so clear how to generalize this:

▶ deleting/inserting large subtrees should be expensive;
▶ but many small modifications may sometimes be worse

than deleting/inserting a larger subtree.

Faculty of Science
Information and Computing Sciences

28

Computing patches

There may be many different patches, transforming one
value into another.

The diff utility has a clear definition of ‘best’ patch: always
choose the patch with the least number of
deletions/insertions.

This works because every line is assumed to have
comparable length; lines are never nested.

It is not so clear how to generalize this:

▶ deleting/inserting large subtrees should be expensive;
▶ but many small modifications may sometimes be worse

than deleting/inserting a larger subtree.

Faculty of Science
Information and Computing Sciences

29

Enumerating patches

Rather than fix one particular choice up front, we chose to
enumerate all possible patches between two trees.

You may want to think of this as a non-deterministic
program – later heuristics or user-interaction might help to
select the ‘best’ patch.

Faculty of Science
Information and Computing Sciences

30

Computing spines & alignments (sketch)

▶ Given two trees, computing the corresponding spine is
deterministic. We only need to compare the trees and
their outermost constructor.

▶ Given two lists of constructor fields, there are many
different alignments:

▶ if the source list is empty, insert all remaining values;
▶ if the target list is empty, delete all remaining values;
▶ otherwise, consider performing a single

insertion/deletion/modification to the current fields.

We can extend this to handle the addition or removal of
constructors.

Faculty of Science
Information and Computing Sciences

31

Complexity

This algorithm is inpractical for any non-trivial trees – but it
defining it enables further exploration!

For example, we may want to define domain specific
heuristics to prune the search space:

▶ try to line up top-level functions with the same in a file;
▶ avoid deleting certain constructors;
▶ insert other constructors whenever possible;
▶ consult an external oracle (such as a user or the output

of diff) to guide the process.

We illustrate our ideas with a simple example in the paper.

Faculty of Science
Information and Computing Sciences

32

Related work

▶ There is a great deal of work on comparing (untyped)
tree comparisons – but much less work that attempts to
exploit the type structure that we have available.

▶ Lempsink et al. & Vassena are a notable exception – but
run a linear diff on the traversal of the tree. This it hard
to guarantee that later operations – such as merging
patches – produce well-formed trees.

Faculty of Science
Information and Computing Sciences

33

Looking ahead

▶ We’ve started instantiating our ideas to specific data
types – such as a (simplified) AST for Clojure. Will our
diff be more accurate on existing code?

▶ We’d like to enrich our universe further to cover richer
(dependent) types and account for variable binding.

▶ We would like to describe how tomerge two
independent patches, incorporating changes from both.

Faculty of Science
Information and Computing Sciences

34

Discussant

Questions?

Faculty of Science
Information and Computing Sciences

34

Discussant

Questions?

