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About me

▶ Studied Mathematics and Computer Science in Utrecht
▶ PhD from University of Nottingham
▶ Postdocs at Chalmers and Nijmegen
▶ OCaml developer at Vector Fabrics
▶ Now Assistant Professor at Utrecht University

I’ve worked with all kinds of functional languages and
interactive proof assistants.

I’m now visiting Galois on sabbatical for the summer.
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The problem

Data comes in all kinds of shapes and sizes.

Some of the formats and protocols used to store or transmit
information in binary can be quite complex.
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Example: IPv4 header
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Example: IPv4 packets

▶ The Version field must be equal to 0100 (i.e. 4)
▶ The Internet Header Length (IHL) specifies the number of

32-bit words the header is long. It must be at least 5;
▶ The Header Checksum occurs halfway through the

header.
▶ The Total Length specifies the length of the packet in

bytes. From the IHL and Total Length fields you can
compute the length of the remaining data.
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Problems

Parsing IPv4 is not easy.

The grammar is beyond context free: computing the length
of the data or checksum involves non-trivial computations.

Specifying formats such as IPv4 is not easy

This is usually done through some combination of natural
language, pseudocode, C structs/unions, RFCs,…

Can we do better?
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This talk

We will try to design a data type for describing various
binary formats.

From such descriptions, we can generate parsers and pretty
printers.

By embedding this construction in a dependently typed
programming language – such as Coq, Agda, or Idris – we
can prove the desired round trip property relating parsing
and pretty printing.

Crucially, we will use dependent types to mix computation
and static type safety.
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Warm up: universes

data FT : Set where
word : (n : N) → FT
_⊗_ : FT → FT → FT

J_K : FT → SetJ word n K = Vec Bit nJ t1 ⊗ t2 K = J t1 K × J t2 K
A pair of a data type that describes a collection of types (FT)
and the decoding function mapping descriptoins to their
corresponding types is sometimes known as a universe.
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Generating parsers from descriptions

Parser : Set → Set
Parser a = List Bit → Maybe (a × List Bit)

parse : (f : FT) → Parser J f K
parse (t1 ⊗ t2) = _,_ <$> parse t1 <*> parse t2
parse (word n) = take n

where
take : (n : N) → Parser (Vec n Bit)
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Pretty printing data

pp : (f : FT) → J f K → List Bit
pp (word n) bs = toList bs
pp (t1 ⊗ t2) (x , y) = pp t1 x ++ pp t2 y
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Round trip correctness

roundTrip : (f : FT) → (x : J f K) →
parse f (pp f x) == just (x, [])

Proof by induction on our description f.
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Limitations

▶ This gives us a very limited language for describing
products of fixed size words.

▶ There are no dependencies between a field and the
type of the remaining fields, e.g., a length field
specifying the size of the remaining data;

▶ There are no constraints on the values that fields may
assume, e.g., a checksum field that is computed from all
other fields or a constant field that must be equal to
0100.
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Interlude: sigma types

data Pair (a : Set) (b : Set) : Set where
_,_ : a → b → Pair a b

Note: the type of the constructor is not dependent.

What if the type of the second component can depend on
the value of the first?

data Σ (a : Set) (b : a → Set) : Set where
_,_ : (x : a) → b x → Σ a b

Constructive equivalent of existential quantification.
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Take two

data FT : Set where
word : (n : N) → FT
_⊗_ : FT → FT → FT
calc : (t : FT) → J t K → FT
sigma : (t : FT) → (J t K → FT) → FT

J_K : FT → SetJ word n K = Vec Bit nJ t1 ⊗ t2 K = J t1 K × J t2 KJ calc t v K = ⊤J sigma t f K = Σ J t K (\ v → J f v K)
This universe now relies on induction recursion.
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Examples: checksum

checksumedByte : FT
checksumedByte =

sigma (word 7) (\ d → calc (word 1) (parity d))
where
parity : Vec Bit n → Bit

▶ A 7 bit word;
▶ Followed by a single parity bit.

The corresponding type J checksumedByte K is
Σ (Vec Bit 7) (\d → ⊤)
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Examples: length field

lengthData : FT
lengthData =

sigma (word 32) (\ d → word (fromBits d))
where
fromBits : J Vec Bit n K → N

▶ A 32-bit word – the length field;
▶ Followed by a word of that length;

The corresponding type J lengthData K is:
Σ (Vec Bit 32) (\d → Vec Bit (fromBits d))
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Parsing

parse : (f : FT) → Parser J f K
parse (sigma x f) input with parse x input
... | just (y , rest) = _,_ <$> pure y

<*> parse (f y)
... | nothing = nothing
parse (calc t x) input with parse t input
... | just (y , rest) = if x == y

then just ( tt , rest)
else nothing

... | nothing = nothing

Parsing sigma types is (almost) the same as parsing pairs; to
parse derived fields, we parse the desired value and check it
is what we expect.
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What next?

We can update pretty printing and round trip proofs.

In ideal world, where all binary formats are defined by type
theorists, we would now be done.

But…

▶ The computations involved are complicated! To make
matters worse, we need to mix information about how
to encode/decode data in the actual descriptions.

▶ Computed data (such as the header checksum in IPv4)
may occur before all data on which it relies is present.
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Plan of attack

1. Define a richer universe of file formats

2. Define a predicate that makes it clear when something
is ‘trivial’ to parse/pretty print – we can use this to
generate the (de)serialization functions.

3. Define transformations on this richer universe, adding
new fields or massaging data somehow.
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Universe

data DT : Set1 where
leaf : Set → DT
_⊗_ : DT → DT → DT
sigma : (c : DT) → (J c K → DT) → DT

J_K : DT → SetJ leaf A K = AJ l ⊗ r K = J l K × J r KJ sigma t f K = Σ J t K (\ x → J f x K)
We define a universe closed under abritrary types, products,
and dependent products.
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Universe

data DT : Set1 where
leaf : Set → DT
_⊗_ : DT → DT → DT
sigma : (c : DT) → (J c K → DT) → DT

▶ This universe is ‘large’ – it contains arbitrary other types.
We can resolve this easily enough by parametrizing our
development by a base universe.

▶ We arguably don’t need both products and dependent
products. We find it useful to distinguish between
sequencing (products) and dependency (sigma types).
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Universe: example

length+word : DT
length+word =

sigma (leaf N) (\ len → leaf (Vec Bits len))

This allows us to specify dependencies independently of the
encoding – this is particularly useful as dependencies and
computations become more complex.
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Parsing?

Of course, these descriptions contain arbitrary data – in
particular data such as functions that cannot be serialized
easily.

If the description contains only binary words in the leaves,
we can parse it easily enough.

data IsLowLevel : DT → Set where
leaf : IsLowLevel (leaf (Vec Bit n))
pair : IsLowLevel l →

IsLowLevel r →
IsLowLevel (l ⊗ r)

sigma : IsLowLevel c →
((x : J c K) → IsLowLevel (d x)) →
IsLowLevel (sigma c d)
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Parsing?

data IsLowLevel : DT → Set where
...

parse : (f : FT) → IsLowLevel f → Parser J f K
The definition of parse is pretty much identical to what we
saw previously.

Proofs of the IsLowLevel predicate can be generated
automatically for most formats.

Assuming all data is binary words, we can call our parse
function. But what if it isn’t?
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Conversions

We can specify how to convert from one representation to
another:

data Conversion (t1 t2 : DT) : Set where
convert : (enc : J t1 K → J t2 K) →

(dec : J t2 K → Maybe J t1 K) →
((x : J t1 K) → (dec (enc x) ≡ just x)) →
Conversion t1 t2

This is a semi-partial isomorphism – or shift in representation
– between two types, J t1 K and J t2 K.
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Categories of conversions

These conversions are closed under composition.

_⊙_ : Conversion t1 t2 →
Conversion t2 t3 →
Conversion t1 t3

And we can define an identity conversion:

idConvert : Conversion t t
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Example: Explicit Congestion Notification (ECN)

data ECN : Set where
Non-ECT : ECN
ECT0 : ECN
ECT1 : ECN
CE : ECN

enc : ECN → Vec Bit 2
dec : Vec Bit 2 → ECN
enc-dec : (x : ECN) → dec (enc x) ≡ just x

Conversions describe the shift in representation of one field
– but how do we extend this to handle a complete
description?
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Converting descriptions

data DTX : DT → Set1 where
convert : Conversion t1 t2 → DTX t1
pair : DTX l → DTX r → DTX (l ⊗ r)
sigma : DTX c → ((x : J c K) → DTX (d x)) →

DTX (sigma c d)

You can think of DTX t as a transformation on the
description t – applying certain data conversions at specific
points in the description.

Once again, there is an identity transformation and we can
compute the reflexitive-transitive closure, DTX*.
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Example: converting natural numbers to bits

length+word : DT
length+word =

sigma (leaf N) (\ len → leaf (Vec Bits len))

length+word+enc : DTX length+word
length+word+enc = sigma int32 (\ len → copy)

where
int32 : Conversion N (Vec Bit 32)
copy : Conversion t t

Describing the lengths of IPv4 packets in this style is really
worth the additional effort.
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Calculating new types and values

extendType : DTX t → DT
extendValue : (tx : DTX t) →J t K → J extendType tx K
Using these functions we can calculate a newmodified
description, call the corresponding parser, and convert the
result back to the desired format.
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What’s missing?

There were two problems we set out to solve initially:

▶ The computations need to mix information about how
to encode/decode data in the actual descriptions.

Done

▶ Computed data (such as the header checksum in IPv4)
may occur before all data on which it relies is present.

How can we add new fields to existing descriptions?
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Idea: a new constructor for the DTX type

data DTX (top : DT) : DT → Set where
...
insert : ...

We add a new type parameter to the DTX type, representing
the ‘global’ description that we’re transforming.

We add a new constructor to the DTX type, inserting new
fields to an existing description.
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Idea: a new constructor for the DTX type

data DTX (top : DT) : DT → Set where
...
insert : (t' : DT) → Side → (J top K → J t' K)

→ DTX top t

data Side : Set where
left right : Side

Calling insert t' left f – inserts a field of type t' before
the current format, calculated from the value of all the
other fields (J top K) using the function f.
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Example: inserting a checksum

t : DT
t = length+word+enc
checksummed : DTX t t
checksummed = insert (leaf Bit) left checksum

where
checksum : J t K → Bit

Here we can insert a checksum bit before the remaining data.
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Calculating new types and values

extendType : {t : DT} → DTX top t → DT
extendType {t = t} (insert t' left _) = t' ⊗ t
extendType {t = t} (insert t' right _) = t ⊗ t'

extendValue : (tx : DTX top t) →J top K → J t K → J extendType tx K
extendValue (insert t' left f) dtop d

= (f dtop , d)
extendValue (insert t' right f) dtop d

= (d , f dtop)

Once again, given any description transformation (a value of
type DTX), we can compute the resulting description and
convert the results of parsing.
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Checking parsed values

Of course, we cannot decide whether or not a checksum is
correct before parsing the remaining data. We can, however,
read in the data and check it validity post hoc:

check : (tx : DTX t t) →J extendType tx K → Maybe J t K
Alternatively, we can define single top-level function that
parses and validates all data.



Faculty of Science
Information and Computing Sciences

37

Drawbacks

The type of the function used to compute derived fields in
the insertion constructor is:

J top K → J t' K
Given the entire top-level data structure, we need to
compute a value of type t'.

But what if we want to perform conditional extensions on
existing data?
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Example: maximum element of a vector

vecBits : DT
vecBits = sigma N (\ len → Vec Bit len)

insertMax : DTX vecBits vecBits
insertMax = sigma copy iMax

where
iMax : (len : N) → DTX vecBits (Vec N len)
iMax zero = copy
iMax (suc n) = insert N right maxVec
maxVec : J vecBits K → N

We need to compute the maximum of any vector, even if we
only want to add a new field to non-empty vectors.
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Solution

The argument to insert that calculates new values has the
type:

J top K
→ J t' K

We want to make it more specific, allowing it to refer to the
current subtree:

(d : J top K) → (v : J t K) → Select d v
→ J t' K

In our maximum vector example, this would correspond to
having a non-empty vector as argument, rather than having
to handle all possible cases.
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Selection (sketched)

To make the type of insertion more precise, we update the
type of our transformations:

data _▷_ : DT → DT → Set where
...

data DTX (top : DT) :
(t : DT) → (s : top ▷ t) → Set where
_⊗_ : DTX top l (s >> fst) →

DTX top r (s >> snd) →
DTX top (l ⊗ r) s

...

This lets us give the more precise type to the insert
constructor.
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Recap

▶ A universe describing arbitrary types closed under
(dependent) products.

▶ A predicate stating when elements of this universe are
‘easy’ to parse.

▶ Generic parse and pretty print functions – satisfying the
expected round trip property.

▶ Transformations allowing you to modify data
representation or insert new fields.

Together this gives you a ‘DSL’ for describing binary data.
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Case study: IPv4
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Types of fields

▶ Enumerations – such as the ECN or Protocol fields –
these are easy to model in Agda; we can describe their
low-level encodings later using a suitable conversion.

▶ (Bounded) natural numbers – the Total Length or
Internet Header Length are big-endian integers. We
typically use Fin (2 ˆ 32) to describe a 32-bit integer
– this makes the computations using these fields easier.
Conversions describe how to serialize such values to
words.
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Types of fields (continued)

▶ Constants – the Version field must be 0100. These can
be inserted into a description.

▶ Variable length words – the Data and Options field
contain words of variable length. Using sigma types we
can capture the dependency between fields. The
calculations involved can be a bit messy…
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Results

Complete description of IPv4 in four steps:

1. Basic definition describing the data stored in a packet.

2. Insert constant fields and converting convenient
lengths to their actual representation.

3. Binary encoding of all high-level data.

4. Insertion of checksums.

Compiled to Haskell and tested against existing IPv4
implementations.

Found a bug in our implementation – choice of big-endian
vs. little-endian of integers.
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Further work

▶ Better error messages when parsing fails.
▶ Named fields – either using Strings, reflection, or

singleton types.
▶ Proofs of (in)equalities are no fun in Agda.
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Take home messages

Data type generic programming uses type structure to
derive new functions.

In this domain, we’ve studied how to transform such
descriptions to accommodate for external constraints,
imposed by existing binary formats.

Instead of writing arbitrary transformations on descriptions,
we have a ‘deep embedding’ of various well-behaved
transformations.

From these transformations, we can calculate new type
descriptions and their associated parsers for realistic binary
formats.
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Questions?


