
Faculty of Science
Information and Computing Sciences

1

Papers we love - Utrecht
QuickCheck

Wouter Swierstra

Faculty of Science
Information and Computing Sciences

2

Requirements for a topic

▶ A paper that I love

▶ A paper that is interesting to academics and developers

▶ A paper that had significant impact on my own career

Faculty of Science
Information and Computing Sciences

2

Requirements for a topic

▶ A paper that I love

▶ A paper that is interesting to academics and developers

▶ A paper that had significant impact on my own career

Faculty of Science
Information and Computing Sciences

2

Requirements for a topic

▶ A paper that I love

▶ A paper that is interesting to academics and developers

▶ A paper that had significant impact on my own career

Faculty of Science
Information and Computing Sciences

3

Faculty of Science
Information and Computing Sciences

4

Haskell in 2000

▶ The Functional Programming course at the University of
Utrecht was taught using WinHugs.

▶ It took a PhD student a week to install GHC.

▶ There was no such thing as Cabal, Stack, Haddock,
Hackage, etc. If you wanted something that wasn’t in
the base libraries, you needed to download it from the
authors homepage.

▶ There were approximately zero industrial users.

Faculty of Science
Information and Computing Sciences

4

Haskell in 2000

▶ The Functional Programming course at the University of
Utrecht was taught using WinHugs.

▶ It took a PhD student a week to install GHC.

▶ There was no such thing as Cabal, Stack, Haddock,
Hackage, etc. If you wanted something that wasn’t in
the base libraries, you needed to download it from the
authors homepage.

▶ There were approximately zero industrial users.

Faculty of Science
Information and Computing Sciences

4

Haskell in 2000

▶ The Functional Programming course at the University of
Utrecht was taught using WinHugs.

▶ It took a PhD student a week to install GHC.

▶ There was no such thing as Cabal, Stack, Haddock,
Hackage, etc. If you wanted something that wasn’t in
the base libraries, you needed to download it from the
authors homepage.

▶ There were approximately zero industrial users.

Faculty of Science
Information and Computing Sciences

4

Haskell in 2000

▶ The Functional Programming course at the University of
Utrecht was taught using WinHugs.

▶ It took a PhD student a week to install GHC.

▶ There was no such thing as Cabal, Stack, Haddock,
Hackage, etc. If you wanted something that wasn’t in
the base libraries, you needed to download it from the
authors homepage.

▶ There were approximately zero industrial users.

Faculty of Science
Information and Computing Sciences

5

—

Faculty of Science
Information and Computing Sciences

6

Wouter in 2000

I started by degree in Mathematics and Computer Science in
1999.

I’d just taken my first course on Functional Programming
using Haskell.

And I really loved it!

Doaitse came back from ICFP ’00 and handed me this
paper…

Faculty of Science
Information and Computing Sciences

6

Wouter in 2000

I started by degree in Mathematics and Computer Science in
1999.

I’d just taken my first course on Functional Programming
using Haskell.

And I really loved it!

Doaitse came back from ICFP ’00 and handed me this
paper…

Faculty of Science
Information and Computing Sciences

6

Wouter in 2000

I started by degree in Mathematics and Computer Science in
1999.

I’d just taken my first course on Functional Programming
using Haskell.

And I really loved it!

Doaitse came back from ICFP ’00 and handed me this
paper…

Faculty of Science
Information and Computing Sciences

7

The problem

How do we test software?

As a running example, let’s assume we’re developing a
library for implementing queues:

enq :: Int -> Queue -> Queue
deq :: Queue -> Maybe Queue
front :: Queue -> Maybe Int
empty :: Queue
toList :: Queue -> List Int
fromList :: List Int -> Queue

Faculty of Science
Information and Computing Sciences

8

Writing tests

Typically, we write unit tests by hand:

testFrontEnq :: Bool
testFrontEnq =

front (enq 4 empty) == Just 4

testDeqEmpty :: Bool
testDeqEmpty =

deq empty == Nothing

...

Faculty of Science
Information and Computing Sciences

9

Test framework

And we may want to group these tests in a list and check
they are all true:

runTests = and [testFrontEnq, testDeqEmpty, ...]

Faculty of Science
Information and Computing Sciences

10

Writing tests

But writing these unit tests manually has drawbacks:

▶ to get good coverage, we need to write many tests;
▶ to get good coverage, we need to think quite hard

about suitable input data.
▶ when a test fails, the test framework won’t help us

figure out why.

Faculty of Science
Information and Computing Sciences

11

Queues

In our example, our tests weren’t very good:

testFrontEnq :: Bool
testFrontEnq =

front (enq 4 empty) == Just 4

This property also holds for a stack!

Faculty of Science
Information and Computing Sciences

12

Types

In our strawman test framework, all of our tests were
assertions of type Bool…

Oftentimes, there is nothing special about the constants
we’re using in our tests – we’d like to abstract over them:

testFrontEnq :: Queue -> Int -> Bool
testFrontEnq q x =

front (enq i q) == Just i

What we’d really like to test is whether or not this property
holds for our queue implementation.

Faculty of Science
Information and Computing Sciences

13

QuickCheck

QuickCheck is a Haskell test framework that lets you test
these properties:

> quickCheck testFrontEnq
Falsifiable, after 4 tests:
(Queue [1], 2)

It generates inputs for the testFrontEnq function and
checks whether the property holds for the generated inputs.

Faculty of Science
Information and Computing Sciences

14

Fix

We can, of course, fix our test to check that we have the
desired FIFO behaviour:

testFifo :: Queue -> Int -> Bool
testFifo q x =

last (toList (enq i q)) == Just i

Faculty of Science
Information and Computing Sciences

15

Implementing QuickCheck

As a first approximation, it may help to think of the
quickCheck function being implemented as follows:

quickCheck :: (a -> Bool) -> IO ()
quickCheck p = go ...

where
go :: [a] -> IO ()
go [] = print "All tests succeed"
go (x:xs) =

if p x then go xs
else print ("Falsified " ++ show x)

The only question still open is: how do we generate inputs
for our property?

Faculty of Science
Information and Computing Sciences

15

Implementing QuickCheck

As a first approximation, it may help to think of the
quickCheck function being implemented as follows:

quickCheck :: (a -> Bool) -> IO ()
quickCheck p = go ...

where
go :: [a] -> IO ()
go [] = print "All tests succeed"
go (x:xs) =

if p x then go xs
else print ("Falsified " ++ show x)

The only question still open is: how do we generate inputs
for our property?

Faculty of Science
Information and Computing Sciences

16

Generating inputs

Basically, we use Haskell’s classes (aka ad-hoc polymorphism,
traits, protocols,interfaces) to define how to generate input
for all the types of data that we wish to test.

▶ QuickCheck generates random input;
▶ Other libraries (SmallCheck) enumerate all inputs up to

a given size;
▶ Other hybrid choices also exist.

The idea is the same: generate data for our properties to
test if they hold.

Faculty of Science
Information and Computing Sciences

17

Using the random inputs

Suppose we have a type class defined (pretty much) as
follows:

class Arbitrary a where
arbitrary :: RandomGenerator -> a

This captures the idea of being able to generate elements of
type a randomly.

-- use arbitary and a rng to generate
-- a list of elements
elements :: Arbitrary a => IO [a]

quickCheck :: Arbitrary a => (a -> Bool) -> IO ()
quickCheck p = do elts <- elements;

go elts

Faculty of Science
Information and Computing Sciences

18

Testing Queues

There are different ways to implement Queues in Haskell:

▶ the simple implementation uses lists, but may be
inefficient;

▶ a clever implementation providing amortized O(1)
access.

Can we use QuickCheck to show that they’re equivalent?

Faculty of Science
Information and Computing Sciences

19

Simple queues

newtype Queue = Queue [Int]

enq :: Int -> Queue -> Queue
enq x (Queue xs) = Queue (xs ++ [x])

front :: Queue -> Maybe Int
front (Queue (x:xs)) = Just x
front (Queue []) = Nothing

empty :: Queue
empty = Queue []

...

Faculty of Science
Information and Computing Sciences

20

Smarter queues

newtype Queue = Queue ([Int],[Int])

enq :: Int -> Queue -> Queue
enq x (Queue (fs,bs)) = Queue (fs, x:bs)

front :: Queue -> Maybe Int
front (Queue (x:fs,bs)) = Just x
front (Queue ([],bs)) = Nothing

empty :: Queue
empty = Queue ([],[])

...

Faculty of Science
Information and Computing Sciences

21

Smarter queues

The only interesting thing we need to do is ensure that
dequeuing elements maintains the invariant that the first
queue is only empty, when the entire queue is empty:

deq :: Queue -> Maybe Queue
deq (Queue (x:fs,bs)) = restore (fs,bs)

where
restore ([],bs) = (reverse bs, [])
restore (fs,bs) = (fs,bs)

Faculty of Science
Information and Computing Sciences

22

Testing our implementation

This gives us two ways to implement the same spec:

▶ the reference implementation using lists;
▶ the more efficient version using queues.

How do we relate the two?

Faculty of Science
Information and Computing Sciences

23

Using QuickCheck

We can convert between our efficient implementation I and
reference implementation R easily enough:

convert :: I.Queue -> R.Queue
convert (I.Queue (fs,bs)) =

R.Queue (fs ++ reverse bs)

testEmpty = convert I.empty == R.empty
testEnq x q = convert (I.enq x q) == R.enq x q
...

Yet these tests fail! We should only consider queues
satisfying our invariant.

Faculty of Science
Information and Computing Sciences

23

Using QuickCheck

We can convert between our efficient implementation I and
reference implementation R easily enough:

convert :: I.Queue -> R.Queue
convert (I.Queue (fs,bs)) =

R.Queue (fs ++ reverse bs)

testEmpty = convert I.empty == R.empty
testEnq x q = convert (I.enq x q) == R.enq x q
...

Yet these tests fail! We should only consider queues
satisfying our invariant.

Faculty of Science
Information and Computing Sciences

24

Revising our tests

invariant (Queue (fs,bs)) = not (null fs) || null bs

testEmpty = convert I.empty == R.empty
testEnq x q =

invariant q ==> convert (I.enq x q) == R.enq x q

We add the precondition invariant q to our tests.

Any test data that does not satisfy the invariant is discarded.

Faculty of Science
Information and Computing Sciences

25

Nested calls?

This tests our two implementations line up after one call.

But what if we want to test that they line up after many
calls?

testEnqEnq x y q = invariant q ==>
convert (I.enq x (I.enq y q))
== R.enq x (R.enq y q)

Aren’t we trying to automate our tests?

Faculty of Science
Information and Computing Sciences

26

Code is data

We can define an explicit data type capturing the API of our
Queue libraries:

data QAPI = Enq Int QAPI
| Front (Maybe Int -> QAPI)
| Deq (Maybe Queue -> QAPI)
| ...

And then interpret this data type as a sequence of
commands on queues:

evaluate :: QAPI -> Queue -> Maybe Queue
evaluate (Enq x c) q = evaluate c (enq x q)
evaluate (Front c) q = evaluate (c (front q)) q
evaluate (Deq c) q = evaluate (c (deq q)) (deq q)
...

Faculty of Science
Information and Computing Sciences

26

Code is data

We can define an explicit data type capturing the API of our
Queue libraries:

data QAPI = Enq Int QAPI
| Front (Maybe Int -> QAPI)
| Deq (Maybe Queue -> QAPI)
| ...

And then interpret this data type as a sequence of
commands on queues:

evaluate :: QAPI -> Queue -> Maybe Queue
evaluate (Enq x c) q = evaluate c (enq x q)
evaluate (Front c) q = evaluate (c (front q)) q
evaluate (Deq c) q = evaluate (c (deq q)) (deq q)
...

Faculty of Science
Information and Computing Sciences

27

Testing reference and implementation

But if we have a data type representing commands on
queues:

data QAPI = Enq Int QAPI
| Front (Maybe Int -> QAPI)
| Deq (Maybe Queue -> QAPI)
| ...

Why not generate random series of commands?

instance Arbitary QAPI where
arbitrary = ...

Faculty of Science
Information and Computing Sciences

28

Testing reference and implementation

And test that these two APIs produce the same results

referenceTest : QAPI -> I.Queue -> Bool
referenceTest cmds q =

I.evaluate cmds q ==
R.evaluate cmds (convert q)

Faculty of Science
Information and Computing Sciences

29

What are our tests?

▶ Unit tests test that a property holds for certain values;
▶ Using QuickCheck, we can test that a property holds for

many values – QuickCheck is generating unit tests.
▶ We can even use QuickCheck to generate a series of API

calls – QuickCheck is generating completely new tests!

Faculty of Science
Information and Computing Sciences

30

Computing specs

Given an API, what are the properties that hold of its
functions?

That seems like an impossible problem to solve
automatically…

Yet using QuickCheck you can get pretty close.

Faculty of Science
Information and Computing Sciences

31

QuickSpec

Suppose we have the API for a handful of list functions:

(++) :: [a] -> [a] -> [a]
(:) :: a -> [a] -> [a]
[] :: [a]
reverse :: [a] -> [a]

What terms can we build using these functions?

Faculty of Science
Information and Computing Sciences

32

Enumerating terms

Given some values x and y, we can enumerate all possible
terms built using these functions:

[]
[] ++ []
(x : [])
(x : y : [])
reverse (x : [])
...

As a first approximation, assume that all these terms are
equal.

Faculty of Science
Information and Computing Sciences

32

Enumerating terms

Given some values x and y, we can enumerate all possible
terms built using these functions:

[]
[] ++ []
(x : [])
(x : y : [])
reverse (x : [])
...

As a first approximation, assume that all these terms are
equal.

Faculty of Science
Information and Computing Sciences

33

Start testing!

Now choose random values for x and y – which terms can
you distinguish?

For example, reverse (x : []) and x:y:[] are different
for any choice of x and y.

But no choice of x, can distinguish reverse (x : []) and x
: [] – hence these must be equal!

Faculty of Science
Information and Computing Sciences

33

Start testing!

Now choose random values for x and y – which terms can
you distinguish?

For example, reverse (x : []) and x:y:[] are different
for any choice of x and y.

But no choice of x, can distinguish reverse (x : []) and x
: [] – hence these must be equal!

Faculty of Science
Information and Computing Sciences

34

QuickSpec

To work well, QuickSpec does quite some work to remove
duplicate equations and present a ‘minimal’ set of equations.

But for many APIs it manages to compute sensible
properties from scratch.

Faculty of Science
Information and Computing Sciences

35

QuickCheck in practice

▶ Functions to classify the data that is generated;
▶ Functions to define random data generators;
▶ Controlling size of data generated and number of tests;
▶ ‘Shrinking’ of counterexamples to facilitate diagnosis.

Faculty of Science
Information and Computing Sciences

36

What makes QuickCheck work?

If you take a step back, what is it that makes QuickCheck
work so well?

▶ Purity – all functions are known to be free of
side-effects;

▶ Types – the types of our properties drive the generation
of random inputs.

This is playing exactly to the strengths of Haskell!

Faculty of Science
Information and Computing Sciences

36

What makes QuickCheck work?

If you take a step back, what is it that makes QuickCheck
work so well?

▶ Purity – all functions are known to be free of
side-effects;

▶ Types – the types of our properties drive the generation
of random inputs.

This is playing exactly to the strengths of Haskell!

Faculty of Science
Information and Computing Sciences

37

Impact

QuickCheck has been ported to 35+ different programming
languages.

It forces you to think of specifications rather than unit tests.

Bugs may still show up in the specification, the random data
generator, or code under test – each requires separate
diagnosis.

Faculty of Science
Information and Computing Sciences

38

Advantages

▶ The underlying ideas of QuickCheck are very widely
applicable to different languages and systems.

▶ It is particularly good at spotting interactions that
conventional test cases miss.

▶ QuickCheck makes diagnosis simple by shrinking inputs.
▶ QuickCheck makes it easier to achieve much better test

coverage.

It’s been used with great success in many different projects.

Faculty of Science
Information and Computing Sciences

39

Why the love?

A simple idea, implemented in about 200 loc. (The original
code was included in an appendix of the paper.)

It plays to Haskell’s strengths: types and purity.

Changes the way we think about testing.

Useful in practice.

Another useful piece of kit in the formal reasoning toolkit.

Faculty of Science
Information and Computing Sciences

40

Questions?

