
Faculty of Science
Information and Computing Sciences

1

Algebraic effects – specification and refinement
Dagstuhl 18172

Wouter Swierstra



Faculty of Science
Information and Computing Sciences

2

Algebraic effects go mainstream

This talk: Back into the ivory tower!



Faculty of Science
Information and Computing Sciences

2

Algebraic effects go mainstream

This talk: Back into the ivory tower!



Faculty of Science
Information and Computing Sciences

3

How to reason about programs written using algebraic effects?



Faculty of Science
Information and Computing Sciences

4

Program verification

1. A program 𝑝
2. A specification 𝑆
3. A proof that 𝑝 satisfies 𝑆



Faculty of Science
Information and Computing Sciences

5

Specifications of f : a → b?

▶ A property of a function:

P : (a → b) → Set

▶ A relation between input and output:

data R : a → b → Set where
...

▶ A predicate transformer:

(b → Set) → (a → Set)

▶ a reference implementation:

g : a → b

▶ and many others…



Faculty of Science
Information and Computing Sciences

6

What is the specification of a program written algebraic effects?

That depends on the handler!



Faculty of Science
Information and Computing Sciences

6

What is the specification of a program written algebraic effects?

That depends on the handler!



Faculty of Science
Information and Computing Sciences

7

What is the specification of a handler?

Jeremy: The equations it must satisfy!



Faculty of Science
Information and Computing Sciences

7

What is the specification of a handler?

Jeremy: The equations it must satisfy!



Faculty of Science
Information and Computing Sciences

8

Your mission, should you choose to accept it…

Consider the usual Put and Get operations used in mutable state…

But the memory is self-destructing. Reading from memory more than
once, crashes your program.



Faculty of Science
Information and Computing Sciences

8

Your mission, should you choose to accept it…

Consider the usual Put and Get operations used in mutable state…

But the memory is self-destructing. Reading from memory more than
once, crashes your program.



Faculty of Science
Information and Computing Sciences

9

Equations?

i <- Get; j <- Get ≡ Abort

i <- Get; Put x; j <- Get k ≡ Abort

I’m sure that – with some thought – we can find a suitable set of
equations.

(Note: the usual Put; Get; k ≡ k and Get; Get ≡ Get do not hold!)



Faculty of Science
Information and Computing Sciences

9

Equations?

i <- Get; j <- Get ≡ Abort

i <- Get; Put x; j <- Get k ≡ Abort

I’m sure that – with some thought – we can find a suitable set of
equations.

(Note: the usual Put; Get; k ≡ k and Get; Get ≡ Get do not hold!)



Faculty of Science
Information and Computing Sciences

9

Equations?

i <- Get; j <- Get ≡ Abort

i <- Get; Put x; j <- Get k ≡ Abort

I’m sure that – with some thought – we can find a suitable set of
equations.

(Note: the usual Put; Get; k ≡ k and Get; Get ≡ Get do not hold!)



Faculty of Science
Information and Computing Sciences

10

A small modification to the spec

But reading from memory more than 63 times, crashes your program.

Exercise: Please update the equations accordingly.



Faculty of Science
Information and Computing Sciences

10

A small modification to the spec

But reading from memory more than 63 times, crashes your program.

Exercise: Please update the equations accordingly.



Faculty of Science
Information and Computing Sciences

10

A small modification to the spec

But reading from memory more than 63 times, crashes your program.

Exercise: Please update the equations accordingly.



Faculty of Science
Information and Computing Sciences

11

Proofs using equations

▶ Familiar and simple concept from universal algebra

▶ Equational proofs are familiar to functional programmers

▶ … equations are typically not first-class.

▶ … syntactic approach of relating programs may be unsuitable for
describing some program properties.



Faculty of Science
Information and Computing Sciences

11

Proofs using equations

▶ Familiar and simple concept from universal algebra

▶ Equational proofs are familiar to functional programmers

▶ … equations are typically not first-class.

▶ … syntactic approach of relating programs may be unsuitable for
describing some program properties.



Faculty of Science
Information and Computing Sciences

12

How to reason about programs using algebraic effects?

▶ Prehistoric approach to algebraic effects and handlers using free
monads;

▶ A few examples in Agda to illustrate the approach.

▶ The unindexed intro to Conor’s talk.



Faculty of Science
Information and Computing Sciences

12

How to reason about programs using algebraic effects?

▶ Prehistoric approach to algebraic effects and handlers using free
monads;

▶ A few examples in Agda to illustrate the approach.

▶ The unindexed intro to Conor’s talk.



Faculty of Science
Information and Computing Sciences

12

How to reason about programs using algebraic effects?

▶ Prehistoric approach to algebraic effects and handlers using free
monads;

▶ A few examples in Agda to illustrate the approach.

▶ The unindexed intro to Conor’s talk.



Faculty of Science
Information and Computing Sciences

13

What is an algebraic effect?

You can specify the operations associated with an algebraic effect by
giving:

▶ C : Set – the type of operations
▶ R : C → Set – the responses passed to the continuation



Faculty of Science
Information and Computing Sciences

14

What are computations?

From these ingredients, we can define the usual free monad:

data Free (C : Set) (R : C → Set) (A : Set) : Set where
pure : A → Free C R A
op : (c : C) → (R c → Free C R A) → Free C R A

A handler then corresponds to an algebra to fold over the free monad.



Faculty of Science
Information and Computing Sciences

15

Example: state

data C : Set where
get : C
put : S → C

R : C → Set
R get = S
R put = Unit

State = Free C R

run : State A → S → A × S
run (pure x) s = (x , s)
run (op get k) s = run (k s) s
run (op (put s) k) _ = run (k tt) s



Faculty of Science
Information and Computing Sciences

16

Reasoning about state

How can we reason about programs of type State A?

▶ We can run the handler to achieve a function of type A → A × S
and reason about that…

▶ But this fixes a specific handler – rather than reasoning about
possible handlers.



Faculty of Science
Information and Computing Sciences

16

Reasoning about state

How can we reason about programs of type State A?

▶ We can run the handler to achieve a function of type A → A × S
and reason about that…

▶ But this fixes a specific handler – rather than reasoning about
possible handlers.



Faculty of Science
Information and Computing Sciences

17

Weakest precondition

wp : (P : S → A → Set) → State A → (S → Set)
wp (pure x) s = P s x
wp (op get k) s = wp (k s) s
wp (op (put s) k) _ = wp (k tt) s

Claim: Here the wp handler computes the weakest precondition on S in
order for the computation to return a value and state satisfying P.

(You can achieve the usual relational presentation from Hoare type
theory from this by reordering the arguments slightly)



Faculty of Science
Information and Computing Sciences

18

Soundness

wp : (P : S → A → Set) → State A → S → Set

Given a predicate, stateful computation and initial state, wp computes a
proposition. Who says this proposition is sensible in any way?

We should show that our handlers are sound with respect to this
proposition:

soundness : (s : S) → wp P c s → P (run c s)



Faculty of Science
Information and Computing Sciences

18

Soundness

wp : (P : S → A → Set) → State A → S → Set

Given a predicate, stateful computation and initial state, wp computes a
proposition. Who says this proposition is sensible in any way?

We should show that our handlers are sound with respect to this
proposition:

soundness : (s : S) → wp P c s → P (run c s)



Faculty of Science
Information and Computing Sciences

19

What about other effects?



Faculty of Science
Information and Computing Sciences

20

Abort

data C : Set where
abort : C

R : C → Set
R abort = ⊥

pt : (P : A → Set) → Free C R A → Set
pt P (pure x) = P x
pt P (op _ _) = ⊥
Idea: the computation of type Free R C A returns a value satisfying P.



Faculty of Science
Information and Computing Sciences

21

Weakest preconditions

wp : (P : B → Set) → (A → Free C R B) → (A → Set)
wp P f = pt P . f

This computes the weakest precondition necessary for our computation
to satisfy P.

Other choices exist, for example, mapping to Maybe or asserting P d for
some default value d.



Faculty of Science
Information and Computing Sciences

21

Weakest preconditions

wp : (P : B → Set) → (A → Free C R B) → (A → Set)
wp P f = pt P . f

This computes the weakest precondition necessary for our computation
to satisfy P.

Other choices exist, for example, mapping to Maybe or asserting P d for
some default value d.



Faculty of Science
Information and Computing Sciences

22

Non-determinism

data C : Set where
or : C
fail : C

R : C → Set
R or = Bool
R fail = ⊥

pt : (P : A → Set) → Free C R A → Set
pt = ?

There are different ways to transform a predicate over A to one over the
free monad Free C R A…



Faculty of Science
Information and Computing Sciences

22

Non-determinism

data C : Set where
or : C
fail : C

R : C → Set
R or = Bool
R fail = ⊥

pt : (P : A → Set) → Free C R A → Set
pt = ?

There are different ways to transform a predicate over A to one over the
free monad Free C R A…



Faculty of Science
Information and Computing Sciences

23

Non-determinism: all or any?

all : (P : A → Set) → Free C R A → Set
all P (pure x) = P x
all P (op or k) = k true × k false
all P (op fail k) = unit

any : (P : A → Set) → Free C R A → Set
any P (pure x) = P x
any P (op or k) = k true + k false
any P (op fail k) = ⊥



Faculty of Science
Information and Computing Sciences

24

Weakest preconditions

▶ Given a Kleisli arrow c : A → Free C R B

▶ a predicate transformer (P : B → Set) → Free C R B → Set

▶ we can compute the weakest precondition A → Set by composing
the pieces.

This works independently of the particular choice of operations or
handlers!



Faculty of Science
Information and Computing Sciences

25

Refinement

Based on the wp semantics, we can define a notion of program
refinement, p1 ⊑ p2.

This refinement holds precisely when

(P : B → Set) → wp p1 P → wp p2 P

Intuitively, when p2 refines p1, we may think of p2 ‘more specific’ than
p1.



Faculty of Science
Information and Computing Sciences

26

Examples

Given two functions f and g of type A → Free C R B, what does
refinement mean?

▶ For Abort, the domain of f must be included in the domain of g
and both functions coincide on the domain of f.

▶ For stateful computations, you get the ‘standard’ notion of program
refinement (postcondition of f implies that of g; preconditions
work the other way around).

▶ For nondeterminism, under the any or all predicate transformers
this gives rise to subset inclusions.

▶ And if you have no effects, the functions be equal for all inputs.



Faculty of Science
Information and Computing Sciences

26

Examples

Given two functions f and g of type A → Free C R B, what does
refinement mean?

▶ For Abort, the domain of f must be included in the domain of g
and both functions coincide on the domain of f.

▶ For stateful computations, you get the ‘standard’ notion of program
refinement (postcondition of f implies that of g; preconditions
work the other way around).

▶ For nondeterminism, under the any or all predicate transformers
this gives rise to subset inclusions.

▶ And if you have no effects, the functions be equal for all inputs.



Faculty of Science
Information and Computing Sciences

27

Towards program calculation

We can extend our free monad with pieces of unfinished programs:

data Free (C : Set) (R : C → Set) (A : Set) : Set where
pure : A → Free C R A
op : (c : C) → (R c → Free C R A) → Free C R A
spec : (P : B → Set) → (B → Free C R A) → Free C R A

Our wp semantics extend to these structures.

Starting from a spec P pure, we can derive a complete program by a
series of refinement steps, replacing specifications with operations until
we have computed the desired result satisfying the spec. See the SCP
paper with Joao Alpuim for details of the construction for mutable state.



Faculty of Science
Information and Computing Sciences

28

Limitations & further work

▶ Free monads, rather than full algebraic effects;

▶ Can Morgan et al.’s work on refinement of probablistic programs be
formulated in this style?

▶ Invariants and recursion?

▶ Some ideas about interaction between different effects…



Faculty of Science
Information and Computing Sciences

29

Questions?



Faculty of Science
Information and Computing Sciences

30

Self-destructing memory

sd : (P : s → a → Set) → Nat → State a → s → Set
sd P n (Pure x) s = P s x
sd P n (Step (Put s) x) _ = sd P n (x tt) s
sd P Zero (Step Get x) s = ⊥
sd P (Succ n) (Step Get x) s = sd P n (x s) s

soundness : (n : Nat) → (P : s → a → Set) →
(c : State a) → (i : s) →
sd P n c i →
P (snd (handle c i)) (fst (handle c i))



Faculty of Science
Information and Computing Sciences

31

This is just…

▶ presheaves

▶ (indexed) containers

▶ predicate transformers semantics

▶ adjunctions

▶ Kan extensions

▶ Hoare type theory

▶ monad transformers

▶ …


