
Faculty of Science
Information and Computing Sciences

1

Calculating correct programs
Wouter Swierstra

Faculty of Science
Information and Computing Sciences

2

Program calculation - The dream of the 70s

Instead of writing programs, we should derive a executable program
from its specification.

The refinement calculus provides a precise logic, defining when such a
derivation is valid.

In other words, it describes how to compute an implementation from a
specification.

Faculty of Science
Information and Computing Sciences

2

Program calculation - The dream of the 70s

Instead of writing programs, we should derive a executable program
from its specification.

The refinement calculus provides a precise logic, defining when such a
derivation is valid.

In other words, it describes how to compute an implementation from a
specification.

Faculty of Science
Information and Computing Sciences

3

Why care about program calculation?

Nobody proves their programs correct…

… let alone calculates a program from a specification.

But understanding program calculation answers questions:

▶ What constitutes a specification?

▶ What programs satisfy a specification?

▶ What steps are valid when deriving a program from its
specification?

Faculty of Science
Information and Computing Sciences

3

Why care about program calculation?

Nobody proves their programs correct…

… let alone calculates a program from a specification.

But understanding program calculation answers questions:

▶ What constitutes a specification?

▶ What programs satisfy a specification?

▶ What steps are valid when deriving a program from its
specification?

Faculty of Science
Information and Computing Sciences

4

Challenge

▶ The refinement calculus mixes specifications and programs.

▶ Interactive proof assistants based on type theory provide a single
framework for proving and programming.

▶ How can we perform such refinement proofs in a proof assistant
such as Coq?

Faculty of Science
Information and Computing Sciences

5

Refinement calculus

Faculty of Science
Information and Computing Sciences

6

Refinement calculus: specifications

Specifications are typically given in the form of a precondition and
postcondition.

The specification [𝑝, 𝑞] is satisfied by a program that, provided the
precondition 𝑝 holds initially, terminates in a state where the
postcondition 𝑞 holds.

Faculty of Science
Information and Computing Sciences

7

Refinement

The central notion of the refinement calculus is that of program
refinement,

𝑝1 ⊑ 𝑝2

This refinement holds precisely when

∀𝑃, wp(𝑝1, 𝑃) ⇒ wp(𝑝2, 𝑃)

This notion of refinement can be applied both to programs and
specifications.

Intuitively, when 𝑝2 refines 𝑝1 we may think of 𝑝2 as ‘more specific’
than 𝑝1.

Faculty of Science
Information and Computing Sciences

8

Refinement calculations

Starting from a specification 𝑆 , we can iteratively refine it:

𝑆 ⊑ 𝑃1 ⊑ ... ⊑ 𝑃𝑛 ⊑ 𝐶

Here 𝑆 is a specification of the form [𝑝, 𝑞] and 𝐶 is a piece of
executable code. The intermediate programs 𝑃𝑖 are a mix of code and
specifications.

Faculty of Science
Information and Computing Sciences

9

Refinement laws

Rather than prove every step of such a calculation correct in terms of
weakest precondition semantics, there are numerous derived laws.

Lemma (skip)

If 𝑝𝑟𝑒 ⇒ 𝑝𝑜𝑠𝑡, then [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] ⊑ skip

Lemma (Following assignment)

For any term 𝐸 , we have [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] ⊑ [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡[𝑤\𝐸]]; 𝑤 ∶∶= 𝐸

Note: Deciding how to apply these laws requires creativity!

Faculty of Science
Information and Computing Sciences

9

Refinement laws

Rather than prove every step of such a calculation correct in terms of
weakest precondition semantics, there are numerous derived laws.

Lemma (skip)

If 𝑝𝑟𝑒 ⇒ 𝑝𝑜𝑠𝑡, then [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] ⊑ skip

Lemma (Following assignment)

For any term 𝐸 , we have [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] ⊑ [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡[𝑤\𝐸]]; 𝑤 ∶∶= 𝐸
Note: Deciding how to apply these laws requires creativity!

Faculty of Science
Information and Computing Sciences

10

Refinement calculations: example

[𝑥 = 𝑋 ∧ 𝑦 = 𝑌 , 𝑥 = 𝑌 ∧ 𝑦 = 𝑋]

⊑ { by the following assignment law }

[𝑥 = 𝑋 ∧ 𝑦 = 𝑌 , 𝑡 = 𝑌 ∧ 𝑦 = 𝑋]; x ::= t
⊑ { by the following assignment law }

[𝑥 = 𝑋 ∧ 𝑦 = 𝑌 , 𝑡 = 𝑌 ∧ 𝑥 = 𝑋]; y ::= x; x ::= t
⊑ { by the following assignment law }

[𝑥 = 𝑋 ∧ 𝑦 = 𝑌 , 𝑦 = 𝑌 ∧ 𝑥 = 𝑋]; t ::= y; y ::= x; x ::= t
⊑ { by the law for skip }

skip ; t ::= y; y ::= x; x ::= t

Faculty of Science
Information and Computing Sciences

10

Refinement calculations: example

[𝑥 = 𝑋 ∧ 𝑦 = 𝑌 , 𝑥 = 𝑌 ∧ 𝑦 = 𝑋]
⊑ { by the following assignment law }

[𝑥 = 𝑋 ∧ 𝑦 = 𝑌 , 𝑡 = 𝑌 ∧ 𝑦 = 𝑋]; x ::= t

⊑ { by the following assignment law }

[𝑥 = 𝑋 ∧ 𝑦 = 𝑌 , 𝑡 = 𝑌 ∧ 𝑥 = 𝑋]; y ::= x; x ::= t
⊑ { by the following assignment law }

[𝑥 = 𝑋 ∧ 𝑦 = 𝑌 , 𝑦 = 𝑌 ∧ 𝑥 = 𝑋]; t ::= y; y ::= x; x ::= t
⊑ { by the law for skip }

skip ; t ::= y; y ::= x; x ::= t

Faculty of Science
Information and Computing Sciences

10

Refinement calculations: example

[𝑥 = 𝑋 ∧ 𝑦 = 𝑌 , 𝑥 = 𝑌 ∧ 𝑦 = 𝑋]
⊑ { by the following assignment law }

[𝑥 = 𝑋 ∧ 𝑦 = 𝑌 , 𝑡 = 𝑌 ∧ 𝑦 = 𝑋]; x ::= t
⊑ { by the following assignment law }

[𝑥 = 𝑋 ∧ 𝑦 = 𝑌 , 𝑡 = 𝑌 ∧ 𝑥 = 𝑋]; y ::= x; x ::= t

⊑ { by the following assignment law }

[𝑥 = 𝑋 ∧ 𝑦 = 𝑌 , 𝑦 = 𝑌 ∧ 𝑥 = 𝑋]; t ::= y; y ::= x; x ::= t
⊑ { by the law for skip }

skip ; t ::= y; y ::= x; x ::= t

Faculty of Science
Information and Computing Sciences

10

Refinement calculations: example

[𝑥 = 𝑋 ∧ 𝑦 = 𝑌 , 𝑥 = 𝑌 ∧ 𝑦 = 𝑋]
⊑ { by the following assignment law }

[𝑥 = 𝑋 ∧ 𝑦 = 𝑌 , 𝑡 = 𝑌 ∧ 𝑦 = 𝑋]; x ::= t
⊑ { by the following assignment law }

[𝑥 = 𝑋 ∧ 𝑦 = 𝑌 , 𝑡 = 𝑌 ∧ 𝑥 = 𝑋]; y ::= x; x ::= t
⊑ { by the following assignment law }

[𝑥 = 𝑋 ∧ 𝑦 = 𝑌 , 𝑦 = 𝑌 ∧ 𝑥 = 𝑋]; t ::= y; y ::= x; x ::= t

⊑ { by the law for skip }

skip ; t ::= y; y ::= x; x ::= t

Faculty of Science
Information and Computing Sciences

10

Refinement calculations: example

[𝑥 = 𝑋 ∧ 𝑦 = 𝑌 , 𝑥 = 𝑌 ∧ 𝑦 = 𝑋]
⊑ { by the following assignment law }

[𝑥 = 𝑋 ∧ 𝑦 = 𝑌 , 𝑡 = 𝑌 ∧ 𝑦 = 𝑋]; x ::= t
⊑ { by the following assignment law }

[𝑥 = 𝑋 ∧ 𝑦 = 𝑌 , 𝑡 = 𝑌 ∧ 𝑥 = 𝑋]; y ::= x; x ::= t
⊑ { by the following assignment law }

[𝑥 = 𝑋 ∧ 𝑦 = 𝑌 , 𝑦 = 𝑌 ∧ 𝑥 = 𝑋]; t ::= y; y ::= x; x ::= t
⊑ { by the law for skip }

skip ; t ::= y; y ::= x; x ::= t

Faculty of Science
Information and Computing Sciences

11

Refinement on paper

Calculating programs from their specification on paper has its drawbacks:

▶ Complex derivations require a great deal of bookkeeping – and it’s
easy to make mistakes.

▶ Upon completion, you still need to transcribe the derived program
to a programming language.

Can we do better?

Faculty of Science
Information and Computing Sciences

12

Embedding in Coq

Faculty of Science
Information and Computing Sciences

13

Embedding in Coq

Together with Joao Alpuim, we showed how to embed the refinement
calculus in Coq, enabling us to:

▶ state and prove refinement laws;

▶ use such laws to interactively derive a program from its
specification;

▶ use the full power of Coq to automate proofs and guide the
development;

▶ generate an executable program from a completed derivation.

Faculty of Science
Information and Computing Sciences

14

Basic definitions

We can represent specifications as a pair of a pre- and postcondition:

Definition Pred (A : Type) : Type := A -> Type.

Record PT (A : Type) : Type :=
MkPT { pre : Pred S;

post : ∀ s : S, pre s -> Pred (A × S)}

Note: the postcondition is a relation between an input state s that
satisfies the precondition, the final result returned and the output state.

Faculty of Science
Information and Computing Sciences

15

Refinement

We can assign a weakest precondition semantics to pre- and
postcondition pairs PT as predicate transformers.

Next we can define a Refinement relation on PT, written 𝑝𝑡1 ⊑ 𝑝𝑡2:

▶ the precondition of 𝑝𝑡1 implies that of 𝑝𝑡2

▶ the postcondition of 𝑝𝑡2 implies that of 𝑝𝑡1

And we can show that it is sound and complete with respect to the
weakest precondition semantics.

Faculty of Science
Information and Computing Sciences

16

Derived laws

We can already prove general properties of refinements, such as:

Lemma strengthenPost :
(∀ s x s', Q1 s (x,s') -> Q2 s (x,s')) ->
[P , Q2] ⊑ [P , Q1].

But we haven’t said anything about our programs yet.

Faculty of Science
Information and Computing Sciences

16

Derived laws

We can already prove general properties of refinements, such as:

Lemma strengthenPost :
(∀ s x s', Q1 s (x,s') -> Q2 s (x,s')) ->
[P , Q2] ⊑ [P , Q1].

But we haven’t said anything about our programs yet.

Faculty of Science
Information and Computing Sciences

17

Syntax

We can describe the syntax of the various effects using a Coq data type.

Inductive Term (a : Type) : Type :=
| New : v -> (Ptr -> Term a) -> Term a
| Read : Ptr -> (v -> Term a) -> Term a
| Write : Ptr -> v -> Term a -> Term a
| Spec : PT b -> (b -> Term a) -> Term a
| Return : a -> Term a.

For now, we assume a fixed type for representing addresses (Ptr) and
values stored on the heap (v).

Faculty of Science
Information and Computing Sciences

18

Semantics?

An inductive data type represents the abstract syntax of our language,
but what about the semantics?

And how can we relate this to the notion of refinement?

Faculty of Science
Information and Computing Sciences

19

Semantics

To define the semantics of terms, we associate a suitable pre- and
postcondition with each syntactic construct.

Fixpoint semantics (t: Term a) : PT a :=
match t with

| Spec s => s
...

Most constructs follow the familiar rules for the semantics of state, even
if they are ‘bottom-up’.

Faculty of Science
Information and Computing Sciences

20

(Read our paper at your leisure)

Faculty of Science
Information and Computing Sciences

21

Refinement of programs

1. We have defined a refinement relation on pre- and postcondition
pairs PT

2. We have defined a semantics for terms, mapping each term to a value
of type PT.

These two pieces together give a refinement relation on terms.

Faculty of Science
Information and Computing Sciences

22

Proof engineering

Faculty of Science
Information and Computing Sciences

23

Refinement proofs

▶ We can prove various properties of our refinement relation (e.g.,
transitivity)

▶ We can prove typical refinement calculus laws (e.g., the following
assignment rule)

▶ Using these lemmas, we can transcribe refinement calculations
from paper to our theorem prover.

Faculty of Science
Information and Computing Sciences

24

Non-interactive refinement

Example: formalizing the derivation of swap:

Definition swap : Term :=
skip; t := x; x := y; y := t;

Definition swapSpec : PT := ...

Lemma swapDerivation :
swapSpec ⊑ swap.
Proof.

...

But this is not yet playing to Coq’s strengths as an interactive theorem
prover…

Faculty of Science
Information and Computing Sciences

24

Non-interactive refinement

Example: formalizing the derivation of swap:

Definition swap : Term :=
skip; t := x; x := y; y := t;

Definition swapSpec : PT := ...

Lemma swapDerivation :
swapSpec ⊑ swap.
Proof.

...

But this is not yet playing to Coq’s strengths as an interactive theorem
prover…

Faculty of Science
Information and Computing Sciences

25

Interactive refinement

Instead of assuming we know the program we want to end up with a
priori, we formulate our derivations as follows:

Lemma swapDerivation :
{ c : Term | swapSpec ⊑ c

/\ isExecutable c}.

Now we need to rephrase the usual refinement lemmas to work on goals
of this form.

For example, the ‘following assignment rule’ fills in part of the program c,
but leaves a goal to complete the remainder of the derivation (hopefully
with an easier refinement problem left).

Faculty of Science
Information and Computing Sciences

26

Guiding principles

▶ All laws have the same general form of conclusion:

{c : Term | spec ⊑ c /\ isExecutable c}

▶ There is at least one lemma implementing the refinement rule
associated with the different language constructs. For compound
statements (if, while, sequential composition) there are usual
several variants.

▶ The order of hypotheses is chosen to maximize the chance of early
failure.

▶ Never assume anything about the shape of the pre- or
postcondition of the specifications involved.

Faculty of Science
Information and Computing Sciences

27

Example: writeLemma

Lemma writeLemma
(ptr : Ptr) (y : v) (spec : PT a) (t : Term a)
(H : ...)
(Step : Spec [... , ...] ⊑ t)
: Spec spec ⊑ Write b ptr y t.

▶ H states the requirement that the precondition of spec implies that
ptr is a valid address;

▶ The Step proof is the ‘continuation’ of the refinement
development, where the state has been updated accordingly.

Faculty of Science
Information and Computing Sciences

28

Adding automation

We have defined a collection of tactics that let you apply such lemmas
(and automate some of the associated book keeping);

Ltac WRITE ptr v :=
eapply (writeLemma ptr v);
simpl_goal.

Here simpl_goal is a custom tactic that unfolds the definition of
refinement, splits any conjunction assumptions, substitutes equalities in
our context, triggers beta reduction, etc.

Faculty of Science
Information and Computing Sciences

29

Example: swap

Definition swapRefinement (P Q : Ptr) :
{c : Term unit & SWAP P Q ⊑ c}.

Proof.
READ Q x.
NEW x T.
READ P y.
WRITE Q y.
READ T z.
WRITE P z.
RETURN tt.
(* Two simple proofs *)
* ... (* lookup P s = lookup Q s' *)
* ... (* lookup Q s = lookup P s' *)

Qed.

Faculty of Science
Information and Computing Sciences

30

Proof debugging

There are many more advanced libraries for reasoning about stateful
computations in Coq that provide:

▶ better proof automation;
▶ richer (separation) logics;
▶ smarter heap models;
▶ …

But if you have written a program, and you get stuck during its
verification with incomprehensible open subgoals, there’s very little
support for debugging the verification effort.

Here we can inspect the remaining specification at any intermediate
point, stepping through the commands one by one.

Faculty of Science
Information and Computing Sciences

30

Proof debugging

There are many more advanced libraries for reasoning about stateful
computations in Coq that provide:

▶ better proof automation;
▶ richer (separation) logics;
▶ smarter heap models;
▶ …

But if you have written a program, and you get stuck during its
verification with incomprehensible open subgoals, there’s very little
support for debugging the verification effort.

Here we can inspect the remaining specification at any intermediate
point, stepping through the commands one by one.

Faculty of Science
Information and Computing Sciences

31

Further support

This encourages a ‘forward’ development – but we can equally well use
the following assignment rule to refine the ‘end’ of the program.

We can check the remaining specification at any point – and apply
weakening/strengthening rules to keep things tidy.

We can split a complex specification into separate subgoals and combine
the resulting developments – this is where a proof assistant really helps.

Faculty of Science
Information and Computing Sciences

32

Extraction

Given any refinement development proving

{c : Term | spec ⊑ c /\ isExecutable c}

we can project out the Term and generate OCaml/Haskell code for it.

We can write a small interpreter in OCaml/Haskell that maps Write
statements to assignments, etc.

Faculty of Science
Information and Computing Sciences

33

Validation

▶ We have shown that the semantics induced by the refinement
relation coincide with their usual axiomatic weakest precondition
semantics.

It works in theory.1

▶ Several case studies, deriving a program that does a binary search
for the integer square root and (the heart of) a union-find data
structure.

It works in practice.2

1 For a suitably definition of theory.

2 For a suitably definition of practice.

Faculty of Science
Information and Computing Sciences

33

Validation

▶ We have shown that the semantics induced by the refinement
relation coincide with their usual axiomatic weakest precondition
semantics.

It works in theory.1

▶ Several case studies, deriving a program that does a binary search
for the integer square root and (the heart of) a union-find data
structure.

It works in practice.2

1 For a suitably definition of theory.

2 For a suitably definition of practice.

Faculty of Science
Information and Computing Sciences

33

Validation

▶ We have shown that the semantics induced by the refinement
relation coincide with their usual axiomatic weakest precondition
semantics.

It works in theory.1

▶ Several case studies, deriving a program that does a binary search
for the integer square root and (the heart of) a union-find data
structure.

It works in practice.2

1 For a suitably definition of theory.

2 For a suitably definition of practice.

Faculty of Science
Information and Computing Sciences

34

Further work

▶ Piggyback on existing Coq developments with better heap models,
such as Ynot;

▶ There is development focuses on a fixed collection of effects – but
can be adapted easily enough to describe others – exceptions,
non-determinism, or general recursion – each yielding their own
theory of refinement.

Faculty of Science
Information and Computing Sciences

35

Questions?

