Data types à la carte

FP AMS - 21/6/18

Wouter Swierstra

Warm-up: expressions in Haskell

Suppose we're implementing a small expression language in Haskell.

We can define a data type for expressions and evaluation function easily enough:
data Expr = Val Int | Add Expr Expr

```
eval :: Expr -> Int
eval (Val x) = x
eval (Add l r) = eval l + eval r
```


Warm-up: expressions in Haskell

Suppose we're implementing a small expression language in Haskell.

We can define a data type for expressions and evaluation function easily enough:
data Expr = Val Int | Add Expr Expr
eval :: Expr -> Int
eval (Val x) = x
eval (Add l r) = eval l + eval r
That's it - we can go home.

Handling changes

Code is never finished - how can we handle changing requirements?

We can add new functions easily enough - we don't even have to modify any existing code

```
render :: Expr -> String
render (Val x) = show x
render (Add l r) =
    parens (show l ++ " + " ++ show r)
```


Handling changes

Code is never finished - how can we handle changing requirements?

We can add new functions easily enough - we don't even have to modify any existing code

```
render :: Expr -> String
render (Val x) = show x
render (Add l r) =
    parens (show l ++ " + " ++ show r)
```

But we cannot add new constructors without modifying the datatype and all functions defined over it.

This situation is dual to that in object oriented languages.
There, we can add new subclasses to a class easily enough...
...but adding new methods requires updating every subclass.

The Expression Problem

Phil Wadler dubbed this the Expression Problem:

The expression problem is a new name for an old problem. The goal is to define a datatype by cases, where one can add new cases to the datatype and new functions over the datatype, without recompiling existing code, and while retaining static type safety (e.g., no casts).

The Expression Problem

Phil Wadler dubbed this the Expression Problem:

The expression problem is a new name for an old problem. The goal is to define a datatype by cases, where one can add new cases to the datatype and new functions over the datatype, without recompiling existing code, and while retaining static type safety (e.g., no casts).

How can we address the Expression Problem in Haskell?

A naive approach

```
data IntExpr = Val Int | Add Expr Expr
data MulExpr = Mul IntExpr Intexpr
type Expr = Either IntExpr MulExpr
data Either a b = Inl a | Inr b
Question
What is wrong with this approach?
```


A naive approach

```
data IntExpr = Val Int | Add Expr Expr
data MulExpr = Mul IntExpr Intexpr
type Expr = Either IntExpr MulExpr
data Either a b = Inl a | Inr b
Question
What is wrong with this approach?
We cannot freely mix addition and multiplication.
```


The problem

data Expr = ...

What constructors should we choose?

The problem

```
data Expr = ...
```

What constructors should we choose?
Whenever we choose the constructors, we're stuck - we won't be able to add new ones easily.

Fixpoints

```
data Expr f = In (f (Expr f))
```

- the type variable f abstracts over the constructors of our data type;
- the type variable f has kind * -> * - it's a type constructor like List - it abstracts over the recursive occurrences of subtrees.
- By applying f to Expr f, we'll replace the type variables in f with these subtrees - similar to writing recursion explicitly using fix or the Y-combinator.
- I'll sometimes refer to f as a (pattern) functor.

Evaluation revisited

```
data AddF a = Val Int | Add a a
data Expr f = In (f (Expr f))
eval (In (Val x)) = x
eval (In (Add l r)) = eval l + eval r
```

We don't seem to have gained much, except for some syntactic noise...

Combining functors

We can combine functors in a very similar manner to the Either data type:
data (f :+: g) r = Left (f r) | Right (g r)
Using this insight, we can grow our expressions step by step.

Example: adding multiplication

```
data Expr f = In (f (Expr f))
data AddF a = Val Int | Add a a
data MulF a = Mul a a
type AddExpr = Expr AddF
type AddMulExpr = Expr (AddF :+: MulF)
addExample :: Expr (MulF :+: AddF)
addExample = In (Inl (Mul (In (Inr (Val 1)))
                                    (In (Inr (Val 2)))))
```

This gives us the machinery to assemble data types à la carte.

Problems

- Constructing expressions is a pain: nobody wants to write injections by hand.
- How can we define functions over these expressions?

Functions over expressions

Usually, we write functions through pattern matching on a fixed set of branches.

But pattern matching on our constructors is painful (we have lots of injections in the way).

And pattern matching fixes the possible patterns that we accept.

Functions over expressions

Usually, we write functions through pattern matching on a fixed set of branches.

But pattern matching on our constructors is painful (we have lots of injections in the way).

And pattern matching fixes the possible patterns that we accept.

Idea
Use Haskell's class system to assemble functions for us! Before we do this, however, we need to talk about functors and folds.

Folds

Folds capture a common pattern of traversing a data structure and computing some value.

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr cons nil [] = nil
foldr cons nil (x:xs) = cons x (foldr cons nil xs)
```

But this also works for other data types!

Folding lists - contd.

foldr : : (a -> r -> r) -> r -> [a] -> r

Compare the types of the constructors with the types of the arguments:

$$
\begin{array}{lllllll}
(:) & :: & \mathrm{a} & -> & {[\mathrm{a}]} & -> & {[\mathrm{a}]} \\
{[]} & :: & \mathrm{a} & -> & {[\mathrm{a}]} & & \\
& & & & & & \\
\text { cons } & :: & \mathrm{a} & -> & \mathrm{b} & -> & \mathrm{b} \\
\text { nil } & :: & \mathrm{a} & -> & \mathrm{b} & &
\end{array}
$$

Folding on trees

```
data Tree a = Leaf a | Node (Tree a) (Tree a)
foldTree :: (b -> b -> b) -> (a -> b) -> Tree a -> b
foldTree node leaf (Leaf x) = leaf x
foldTree node leaf (Node l r) =
    node (foldTree node leaf l) (foldTree node leaf r)
```


Ideas in each fold

- Replace constructors by user-supplied arguments.
- Recursive substructures are replaced by recursive calls.

Can we give an account that works for any data type?

Catamorphism generically

If we know the the recursive positions, we can express the fold or catamorphism generically:

```
class Functor f where
    fmap :: (a -> b) -> f a -> f b
cata :: (Functor f) =>
                        (f a -> a) -> Expr f -> a
cata phi (In t) = phi (fmap (cata phi) t)
```

The argument to cata describing how to handle each constructor, f a -> a, is sometimes called an algebra.

Functions over expressions

We can use the cata function to traverse our expressions:

```
cataAdd :: Expr AddF -> Int
cataAdd = cata alg
    where
        alg (Add x y) = x + y
alg (Val x) = x
```


Functions over expressions

We can use the cata function to traverse our expressions:

```
cataAdd :: Expr AddF -> Int
cataAdd = cata alg
    where
        alg (Add x y) = x + y
alg (Val x) = x
```

But can we do something more open ended?

Algebras using classes

More generally, to define a function over an expression without knowing the constructors - we introduce a new type class:

```
class Eval f where
    evalAlg :: f Int -> Int
eval :: Eval f => Expr f -> Int
eval = cata evalAlg
```


Functions over expressions

We can now add instance for all the constructors that we wish to support:
instance Eval AddF where

$$
\begin{aligned}
\text { evalAlg (Add l r) } & =1+r \\
\text { evalAlg (Val i) } & =\mathrm{i}
\end{aligned}
$$

instance Eval MulF where

$$
\text { evalAlg }(\text { Mul l r) }=1 * r
$$

Functions over expressions

To assemble the desired algebra, however, we need one more instance:

```
instance (Eval f, Eval g) => Eval (f :+: g) where
    evalAlg x = ...
Question
What should this instance be?
```


Functions over expressions

To assemble the desired algebra, however, we need one more instance:
instance (Eval f, Eval g) => Eval (f :+: g) where evalAlg (Inl x) = evalAlg x evalAlg (Inr y) = evalAlg y

The Expression Problem

- How can we write functions over expressions?
- Use type classes
- Constructing expressions is a pain:

```
addExample :: Expr (MulF :+: AddF)
addExample = In (Inl (Mul (In (Inr (Val 1)))
                                (In (Inr (Val 2)))))
```


The Expression Problem

- How can we write functions over expressions?
- Use type classes
- Constructing expressions is a pain:

```
addExample :: Expr (MulF :+: AddF)
addExample = In (Inl (Mul (In (Inr (Val 1)))
                                    (In (Inr (Val 2)))))
Idea
Define smart constructors!
```


Not so smart constructors

For any fixed pattern functor, we can define auxiliary functions to assemble datatypes:
data AddF a = Val Int | Add a a
type AddExpr = Expr AddF
add :: AddExpr -> AddExpr -> AddExpr
add $1 \mathrm{r}=\mathrm{In}(A d d \mathrm{l}$)
But how can we handle coproducts of pattern functors?

Automating injections

To deal with coproducts, we introduce a type class describing how to inject some 'small' pattern functor sub into a larger one sup:

```
class (:<:) sub sup where
    inj :: sub a -> sup a
```

What instances are there?

Instances

```
class (:<:) sub sup where
    inj :: sub a -> sup a
instance (:<:) f f where
    inj = ...
instance (:<:) f (f :+: g) where
        inj = ...
instance ((:<:) f g) => (:<:) f (h :+: g) where
        inj = ...
Question
How should we complete the above definitions?
```


Instances

```
class (:<:) sub sup where
    inj : : sub a \(->\) sup a
instance (:<:) f f where
    inj \(=\) id
instance (:<:) f (f :+: g) where
        inj \(=\) Inl
instance \(((:<:) f\) g) \(=>(:<:) f(h:+: g)\) where
        inj = inj . Inr
```


Smart constructors

$$
\begin{aligned}
& \text { inject :: ((:<:) g f) => g (Expr f) -> Expr f } \\
& \text { inject = In . inj } \\
& \text { val :: (AddF :<: f) => Int -> Expr f } \\
& \text { val } x \quad=\text { inject (Val x) } \\
& \text { add : : (AddF :<: f) => Expr f -> Expr f -> Expr f } \\
& \text { add } \mathrm{x} \mathrm{y}=\text { inject (Add } \mathrm{x} y) \\
& \text { mul : : (MulF :<: f) => Expr f -> Expr f -> Expr f } \\
& \text { mul } \mathrm{x} y=\text { inject (Mul x y) }
\end{aligned}
$$

Results!

```
e1 :: Expr AddF
e1 = val 1 `add` val 2
v1 :: Int
v1 = eval e1
e2 :: Expr (MulF :+: AddF)
e2 = val 1 `mul` (val 2 `add` val 3)
v2 :: Int
v2 = eval e2
```


Extensibility

We can easily add new constructors:
data SubF $a=\operatorname{SubF}$ a a
type NewExpr = SubF :+: MulF :+: AddF
Or define new functions:

```
class Render f where
    render :: f String -> String
```


General recursion

What if we would like to define recursive functions without using folds?

A first attempt might be:
class Render f where render :: f (Expr f) -> String

General recursion

What if we would like to define recursive functions without using folds?

A first attempt might be:
class Render f where render :: f (Expr f) -> String

But this is too restrictive! We require f and the recursive pattern functors (Expr f) to be the same.

Generalizing

A more general type seems better:

```
class Render f where
    render :: f (Expr g) -> String
```

We can try to define an instance:
instance Render Mul where

```
render :: Mul (Expr g) -> String
```

render (Mul l r) = ...

But now we cannot make a recursive call! We don't know that the pattern functor g can be rendered.

General recursion

```
class Render f where
    render :: Render g => f (Expr g) -> String
instance Render Mul where
    render :: Mul (Expr g) -> String
    render (Mul l r) = renderExpr l
                        ++ " * "
                            ++ renderExpr r
renderExpr :: Render f => Expr f -> String
renderExpr (In t) = render t
```

- Pattern functors give us the mathematical machinery to describe and recursive datatypes.
- We can define a generic fold operation (cata);
- We can use Haskell's type classes to assemble modular datatypes and functions!

Looking back

- Pearl matured into bigger libraries, addressing some limitations of the injections (Patrik Bahr et al.)
- Inspired work in other languages, such as The expression problem, trivially (Wang \& Oliveira), or Meta-theory à la carte (Delaware et al.).
- The key ideas were already written by Luc Duponcheel twenty years ago!

Further topics

- So you can combine datatypes - but can you combine monads?
- Why did you choose the :+: operator? Why are Haskell's data types called algebraic?
- What are Church encodings?

Combining monads?

The :+: operator is the canonical way to combine the constructors of a datatype.

Can we use the same operation to combine monads?
That is, if m1 and m2 are monads, can we construct a monad m1 :+: m2?

Combining monads?

The :+: operator is the canonical way to combine the constructors of a datatype.

Can we use the same operation to combine monads?
That is, if m1 and m2 are monads, can we construct a monad m1 :+: m2?

The paper 'Composing Monads Using Coproducts' explores this idea.

This construction works, but does not account for the 'interaction' between m1 and m2.

Yet there is a class of monads for which this construction does work.

Get-Put

> In the labs, we saw the following data type:
> data Teletype a = Get (Char -> Teletype a) | Put Char (Teletype a)
> | Return a
> instance Monad Teletype where
> -••

Can we describe this using pattern functors?

Using pattern functors

data TeletypeF r = Get (Char -> r)
| Put Char r

data Teletype a =
In (TeletypeF (Teletype a))
| Return a

Free monads

We can capture this pattern as a so-called free monad:
data Free f a =
In (f (Free fa))
| Return a

For any functor f this definition is a monad.
Question
Why? What other familiar monads are free?

```
instance (Functor f) => Monad (Term f) where
    return x = Return x
    (Return x) >>= f = f x
    (In t) >>= f = In (fmap (>>= f) t)
```


Combining monads

Using the same machinery we saw previously, we can combine free monads in a uniform fashion.
data FileSystem a =
ReadFile FilePath (String -> a)
| WriteFile FilePath String a
class Functor f => Exec f where execAlgebra :: f (IO a) -> IO a
cat :: FilePath -> Term (Teletype :+: FileSystem)
This gives us a more fine-grained collection of effects that can all be run in the IO monad.

Algebraic datatypes

Haskell's data types are sometimes called algebraic datatypes

- why?

Algebraic datatypes

The :+: and :*: (pairing) operators behave similarly to * and + on numbers. The unit type () is a like 1.

For example, for any type t we can show $1 * t$ is isomorphic to t .

Or for any types t and u, we can show $t * u$ is isomorphic to u * t.

Similarly, t :+: u is isomorphic to u :+: t.
Question
What is the unit of : $+:$?

Church encodings revisited

Using this definition, we can now give a more precise account of the Church encoding of algebraic data structures that we saw previously.

The idea behind Church encodings is that we identify:

- a data type (described as the least fixpoint of a functor)
- the fold over this datatype

Church encoding: lists

```
type Church a = forall r . r -> (a -> r -> r) -> r
-- reconstruct a list by applying constructors
from :: Church a -> [a]
from f = ...
-- map a list to its fold
to :: [a] -> Church a
to xs = ...
```


Church encoding: lists

```
type Church a = forall r . r -> (a -> r -> r) -> r
-- reconstruct a list by applying constructors
from :: Church a -> [a]
from f = f [] (:)
-- map a list to its fold
to :: [a] -> Church a
to xs = \nil cons -> foldr cons nil xs
```


Generic Church encoding

```
type Church f = forall r . (f r -> r) -> r
cata :: Functor f => (f a -> a) -> Fix f -> a
cata f (In t) = f (fmap (cata f) t)
to :: Functor f => Fix f -> Church f
to t = \f -> cata f t
from :: Functor f => Church f -> Fix f
from f = f In
```

