
Faculty of Science
Information and Computing Sciences

1

Data types à la carte
FP AMS – 21/6/18

Wouter Swierstra



Faculty of Science
Information and Computing Sciences

2

Warm-up: expressions in Haskell

Suppose we’re implementing a small expression language in
Haskell.

We can define a data type for expressions and evaluation
function easily enough:

data Expr = Val Int | Add Expr Expr

eval :: Expr -> Int
eval (Val x) = x
eval (Add l r) = eval l + eval r

That’s it – we can go home.



Faculty of Science
Information and Computing Sciences

2

Warm-up: expressions in Haskell

Suppose we’re implementing a small expression language in
Haskell.

We can define a data type for expressions and evaluation
function easily enough:

data Expr = Val Int | Add Expr Expr

eval :: Expr -> Int
eval (Val x) = x
eval (Add l r) = eval l + eval r

That’s it – we can go home.



Faculty of Science
Information and Computing Sciences

3

Handling changes

Code is never finished – how can we handle changing
requirements?

We can add new functions easily enough – we don’t even
have to modify any existing code

render :: Expr -> String
render (Val x) = show x
render (Add l r) =
parens (show l ++ " + " ++ show r)

But we cannot add new constructorswithout modifying the
datatype and all functions defined over it.



Faculty of Science
Information and Computing Sciences

3

Handling changes

Code is never finished – how can we handle changing
requirements?

We can add new functions easily enough – we don’t even
have to modify any existing code

render :: Expr -> String
render (Val x) = show x
render (Add l r) =
parens (show l ++ " + " ++ show r)

But we cannot add new constructorswithout modifying the
datatype and all functions defined over it.



Faculty of Science
Information and Computing Sciences

4

FP vs OO

This situation is dual to that in object oriented languages.

There, we can add new subclasses to a class easily enough…

…but adding new methods requires updating every
subclass.



Faculty of Science
Information and Computing Sciences

5

The Expression Problem

Phil Wadler dubbed this the Expression Problem:

The expression problem is a new name for an
old problem. The goal is to define a datatype
by cases, where one can add new cases to the
datatype and new functions over the datatype,
without recompiling existing code, and while
retaining static type safety (e.g., no casts).

How can we address the Expression Problem in Haskell?



Faculty of Science
Information and Computing Sciences

5

The Expression Problem

Phil Wadler dubbed this the Expression Problem:

The expression problem is a new name for an
old problem. The goal is to define a datatype
by cases, where one can add new cases to the
datatype and new functions over the datatype,
without recompiling existing code, and while
retaining static type safety (e.g., no casts).

How can we address the Expression Problem in Haskell?



Faculty of Science
Information and Computing Sciences

6

A naive approach

data IntExpr = Val Int | Add Expr Expr

data MulExpr = Mul IntExpr Intexpr

type Expr = Either IntExpr MulExpr

data Either a b = Inl a | Inr b

Question
What is wrong with this approach?

We cannot freely mix addition and multiplication.



Faculty of Science
Information and Computing Sciences

6

A naive approach

data IntExpr = Val Int | Add Expr Expr

data MulExpr = Mul IntExpr Intexpr

type Expr = Either IntExpr MulExpr

data Either a b = Inl a | Inr b

Question
What is wrong with this approach?
We cannot freely mix addition and multiplication.



Faculty of Science
Information and Computing Sciences

7

The problem

data Expr = ...

What constructors should we choose?

Whenever we choose the constructors, we’re stuck – we
won’t be able to add new ones easily.



Faculty of Science
Information and Computing Sciences

7

The problem

data Expr = ...

What constructors should we choose?

Whenever we choose the constructors, we’re stuck – we
won’t be able to add new ones easily.



Faculty of Science
Information and Computing Sciences

8

Fixpoints

data Expr f = In (f (Expr f))

▶ the type variable f abstracts over the constructors of
our data type;

▶ the type variable f has kind * -> * – it’s a type
constructor like List – it abstracts over the recursive
occurrences of subtrees.

▶ By applying f to Expr f, we’ll replace the type variables
in fwith these subtrees – similar to writing recursion
explicitly using fix or the Y-combinator.

▶ I’ll sometimes refer to f as a (pattern) functor.



Faculty of Science
Information and Computing Sciences

9

Evaluation revisited

data AddF a = Val Int | Add a a

data Expr f = In (f (Expr f))

eval (In (Val x)) = x
eval (In (Add l r)) = eval l + eval r

We don’t seem to have gained much, except for some
syntactic noise…



Faculty of Science
Information and Computing Sciences

10

Combining functors

We can combine functors in a very similar manner to the
Either data type:

data (f :+: g) r = Left (f r) | Right (g r)

Using this insight, we can grow our expressions step by step.



Faculty of Science
Information and Computing Sciences

11

Example: adding multiplication

data Expr f = In (f (Expr f))

data AddF a = Val Int | Add a a
data MulF a = Mul a a

type AddExpr = Expr AddF
type AddMulExpr = Expr (AddF :+: MulF)

addExample :: Expr (MulF :+: AddF)
addExample = In (Inl (Mul (In (Inr (Val 1)))

(In (Inr (Val 2)))))

This gives us the machinery to assemble data types à la carte.



Faculty of Science
Information and Computing Sciences

12

Problems

▶ Constructing expressions is a pain: nobody wants to
write injections by hand.

▶ How can we define functions over these expressions?



Faculty of Science
Information and Computing Sciences

13

Functions over expressions

Usually, we write functions through pattern matching on a
fixed set of branches.

But pattern matching on our constructors is painful (we
have lots of injections in the way).

And pattern matching fixes the possible patterns that we
accept.

Idea
Use Haskell’s class system to assemble functions for us!
Before we do this, however, we need to talk about functors
and folds.



Faculty of Science
Information and Computing Sciences

13

Functions over expressions

Usually, we write functions through pattern matching on a
fixed set of branches.

But pattern matching on our constructors is painful (we
have lots of injections in the way).

And pattern matching fixes the possible patterns that we
accept.

Idea
Use Haskell’s class system to assemble functions for us!
Before we do this, however, we need to talk about functors
and folds.



Faculty of Science
Information and Computing Sciences

14

Folds

Folds capture a common pattern of traversing a data
structure and computing some value.

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr cons nil [] = nil
foldr cons nil (x:xs) = cons x (foldr cons nil xs)

But this also works for other data types!



Faculty of Science
Information and Computing Sciences

15

Folding lists – contd.

foldr :: (a -> r -> r) -> r -> [a] -> r

Compare the types of the constructors with the types of the
arguments:

(:) :: a -> [a] -> [a]
[] :: a -> [a]

cons :: a -> b -> b
nil :: a -> b



Faculty of Science
Information and Computing Sciences

16

Folding on trees

data Tree a = Leaf a | Node (Tree a) (Tree a)

foldTree :: (b -> b -> b) -> (a -> b) -> Tree a -> b
foldTree node leaf (Leaf x) = leaf x
foldTree node leaf (Node l r) =
node (foldTree node leaf l) (foldTree node leaf r)



Faculty of Science
Information and Computing Sciences

17

Ideas in each fold

▶ Replace constructors by user-supplied arguments.
▶ Recursive substructures are replaced by recursive calls.

Can we give an account that works for any data type?



Faculty of Science
Information and Computing Sciences

18

Catamorphism generically

If we know the the recursive positions, we can express the
fold or catamorphism generically:

class Functor f where
fmap :: (a -> b) -> f a -> f b

cata :: (Functor f) =>
(f a -> a) -> Expr f -> a

cata phi (In t) = phi (fmap (cata phi) t)

The argument to cata describing how to handle each
constructor, f a -> a, is sometimes called an algebra.



Faculty of Science
Information and Computing Sciences

19

Functions over expressions

We can use the cata function to traverse our expressions:

cataAdd :: Expr AddF -> Int
cataAdd = cata alg

where
alg (Add x y) = x + y
alg (Val x) = x

But can we do something more open ended?



Faculty of Science
Information and Computing Sciences

19

Functions over expressions

We can use the cata function to traverse our expressions:

cataAdd :: Expr AddF -> Int
cataAdd = cata alg

where
alg (Add x y) = x + y
alg (Val x) = x

But can we do something more open ended?



Faculty of Science
Information and Computing Sciences

20

Algebras using classes

More generally, to define a function over an expression –
without knowing the constructors – we introduce a new
type class:

class Eval f where
evalAlg :: f Int -> Int

eval :: Eval f => Expr f -> Int
eval = cata evalAlg



Faculty of Science
Information and Computing Sciences

21

Functions over expressions

We can now add instance for all the constructors that we
wish to support:

instance Eval AddF where
evalAlg (Add l r) = l + r
evalAlg (Val i) = i

instance Eval MulF where
evalAlg (Mul l r) = l * r

...



Faculty of Science
Information and Computing Sciences

22

Functions over expressions

To assemble the desired algebra, however, we need one
more instance:

instance (Eval f, Eval g) => Eval (f :+: g) where
evalAlg x = ...

Question
What should this instance be?



Faculty of Science
Information and Computing Sciences

23

Functions over expressions

To assemble the desired algebra, however, we need one
more instance:

instance (Eval f, Eval g) => Eval (f :+: g) where
evalAlg (Inl x) = evalAlg x
evalAlg (Inr y) = evalAlg y



Faculty of Science
Information and Computing Sciences

24

The Expression Problem

▶ How can we write functions over expressions?
▶ Use type classes

▶ Constructing expressions is a pain:

addExample :: Expr (MulF :+: AddF)
addExample = In (Inl (Mul (In (Inr (Val 1)))

(In (Inr (Val 2)))))

Idea
Define smart constructors!



Faculty of Science
Information and Computing Sciences

24

The Expression Problem

▶ How can we write functions over expressions?
▶ Use type classes

▶ Constructing expressions is a pain:

addExample :: Expr (MulF :+: AddF)
addExample = In (Inl (Mul (In (Inr (Val 1)))

(In (Inr (Val 2)))))

Idea
Define smart constructors!



Faculty of Science
Information and Computing Sciences

25

Not so smart constructors

For any fixed pattern functor, we can define auxiliary
functions to assemble datatypes:

data AddF a = Val Int | Add a a
type AddExpr = Expr AddF

add :: AddExpr -> AddExpr -> AddExpr
add l r = In (Add l r)

But how can we handle coproducts of pattern functors?



Faculty of Science
Information and Computing Sciences

26

Automating injections

To deal with coproducts, we introduce a type class
describing how to inject some ‘small’ pattern functor sub
into a larger one sup:

class (:<:) sub sup where
inj :: sub a -> sup a

What instances are there?



Faculty of Science
Information and Computing Sciences

27

Instances

class (:<:) sub sup where
inj :: sub a -> sup a

instance (:<:) f f where
inj = ...

instance (:<:) f (f :+: g) where
inj = ...

instance ((:<:) f g) => (:<:) f (h :+: g) where
inj = ...

Question
How should we complete the above definitions?



Faculty of Science
Information and Computing Sciences

28

Instances

class (:<:) sub sup where
inj :: sub a -> sup a

instance (:<:) f f where
inj = id

instance (:<:) f (f :+: g) where
inj = Inl

instance ((:<:) f g) => (:<:) f (h :+: g) where
inj = inj . Inr



Faculty of Science
Information and Computing Sciences

29

Smart constructors

inject :: ((:<:) g f) => g (Expr f) -> Expr f
inject = In . inj

val :: (AddF :<: f) => Int -> Expr f
val x = inject (Val x)

add :: (AddF :<: f) => Expr f -> Expr f -> Expr f
add x y = inject (Add x y)

mul :: (MulF :<: f) => Expr f -> Expr f -> Expr f
mul x y = inject (Mul x y)



Faculty of Science
Information and Computing Sciences

30

Results!

e1 :: Expr AddF
e1 = val 1 `add` val 2

v1 :: Int
v1 = eval e1

e2 :: Expr (MulF :+: AddF)
e2 = val 1 `mul` (val 2 `add` val 3)

v2 :: Int
v2 = eval e2



Faculty of Science
Information and Computing Sciences

31

Extensibility

We can easily add new constructors:

data SubF a = SubF a a

type NewExpr = SubF :+: MulF :+: AddF

Or define new functions:

class Render f where
render :: f String -> String



Faculty of Science
Information and Computing Sciences

32

General recursion

What if we would like to define recursive functions without
using folds?

A first attempt might be:

class Render f where
render :: f (Expr f) -> String

But this is too restrictive! We require f and the recursive
pattern functors (Expr f) to be the same.



Faculty of Science
Information and Computing Sciences

32

General recursion

What if we would like to define recursive functions without
using folds?

A first attempt might be:

class Render f where
render :: f (Expr f) -> String

But this is too restrictive! We require f and the recursive
pattern functors (Expr f) to be the same.



Faculty of Science
Information and Computing Sciences

33

Generalizing

A more general type seems better:

class Render f where
render :: f (Expr g) -> String

We can try to define an instance:

instance Render Mul where
render :: Mul (Expr g) -> String
render (Mul l r) = ...

But now we cannot make a recursive call! We don’t know
that the pattern functor g can be rendered.



Faculty of Science
Information and Computing Sciences

34

General recursion

class Render f where
render :: Render g => f (Expr g) -> String

instance Render Mul where
render :: Mul (Expr g) -> String
render (Mul l r) = renderExpr l

++ " * "
++ renderExpr r

renderExpr :: Render f => Expr f -> String
renderExpr (In t) = render t



Faculty of Science
Information and Computing Sciences

35

Recap

▶ Pattern functors give us the mathematical machinery to
describe and recursive datatypes.

▶ We can define a generic fold operation (cata);
▶ We can use Haskell’s type classes to assemble modular

datatypes and functions!



Faculty of Science
Information and Computing Sciences

36

Looking back

▶ Pearl matured into bigger libraries, addressing some
limitations of the injections (Patrik Bahr et al.)

▶ Inspired work in other languages, such as The expression
problem, trivially (Wang & Oliveira), orMeta-theory à la
carte (Delaware et al.).

▶ The key ideas were already written by Luc Duponcheel
twenty years ago!



Faculty of Science
Information and Computing Sciences

37

Further topics

▶ So you can combine datatypes – but can you combine
monads?

▶ Why did you choose the :+: operator? Why are
Haskell’s data types called algebraic?

▶ What are Church encodings?



Faculty of Science
Information and Computing Sciences

38

Combining monads?

The :+: operator is the canonical way to combine the
constructors of a datatype.

Can we use the same operation to combine monads?

That is, if m1 and m2 are monads, can we construct a monad
m1 :+: m2?

The paper ‘Composing Monads Using Coproducts’ explores
this idea.

This construction works, but does not account for the
‘interaction’ between m1 and m2.

Yet there is a class of monads for which this construction
does work.



Faculty of Science
Information and Computing Sciences

38

Combining monads?

The :+: operator is the canonical way to combine the
constructors of a datatype.

Can we use the same operation to combine monads?

That is, if m1 and m2 are monads, can we construct a monad
m1 :+: m2?

The paper ‘Composing Monads Using Coproducts’ explores
this idea.

This construction works, but does not account for the
‘interaction’ between m1 and m2.

Yet there is a class of monads for which this construction
does work.



Faculty of Science
Information and Computing Sciences

39

Get-Put

In the labs, we saw the following data type:

data Teletype a =
Get (Char -> Teletype a)
| Put Char (Teletype a)
| Return a

instance Monad Teletype where
...

Can we describe this using pattern functors?



Faculty of Science
Information and Computing Sciences

40

Using pattern functors

data TeletypeF r =
Get (Char -> r)
| Put Char r

data Teletype a =
In (TeletypeF (Teletype a))
| Return a



Faculty of Science
Information and Computing Sciences

41

Free monads

We can capture this pattern as a so-called free monad :

data Free f a =
In (f (Free f a))
| Return a

For any functor f this definition is a monad.

Question
Why? What other familiar monads are free?



Faculty of Science
Information and Computing Sciences

42

instance (Functor f) => Monad (Term f) where
return x = Return x
(Return x) >>= f = f x
(In t) >>= f = In (fmap (>>= f) t)



Faculty of Science
Information and Computing Sciences

43

Combining monads

Using the same machinery we saw previously, we can
combine free monads in a uniform fashion.

data FileSystem a =
ReadFile FilePath (String -> a)

| WriteFile FilePath String a

class Functor f => Exec f where
execAlgebra :: f (IO a) -> IO a

cat :: FilePath -> Term (Teletype :+: FileSystem) ()

This gives us a more fine-grained collection of effects that
can all be run in the IO monad.



Faculty of Science
Information and Computing Sciences

44

Algebraic datatypes

Haskell’s data types are sometimes called algebraic datatypes
– why?



Faculty of Science
Information and Computing Sciences

45

Algebraic datatypes

The :+: and :*: (pairing) operators behave similarly to *
and + on numbers. The unit type () is a like 1.

For example, for any type twe can show 1 * t is isomorphic
to t.

Or for any types t and u, we can show t * u is isomorphic to
u * t.

Similarly, t :+: u is isomorphic to u :+: t.

Question
What is the unit of :+:?



Faculty of Science
Information and Computing Sciences

46

Church encodings revisited

Using this definition, we can now give a more precise
account of the Church encoding of algebraic data structures
that we saw previously.

The idea behind Church encodings is that we identify:

▶ a data type (described as the least fixpoint of a functor)
▶ the fold over this datatype



Faculty of Science
Information and Computing Sciences

47

Church encoding: lists

type Church a = forall r . r -> (a -> r -> r) -> r

-- reconstruct a list by applying constructors
from :: Church a -> [a]
from f = ...

-- map a list to its fold
to :: [a] -> Church a
to xs = ...



Faculty of Science
Information and Computing Sciences

48

Church encoding: lists

type Church a = forall r . r -> (a -> r -> r) -> r

-- reconstruct a list by applying constructors
from :: Church a -> [a]
from f = f [] (:)

-- map a list to its fold
to :: [a] -> Church a
to xs = \nil cons -> foldr cons nil xs



Faculty of Science
Information and Computing Sciences

49

Generic Church encoding

type Church f = forall r . (f r -> r) -> r

cata :: Functor f => (f a -> a) -> Fix f -> a
cata f (In t) = f (fmap (cata f) t)

to :: Functor f => Fix f -> Church f
to t = \f -> cata f t

from :: Functor f => Church f -> Fix f
from f = f In



Faculty of Science
Information and Computing Sciences

50


