
Faculty of Science
Information and Computing Sciences

1

Structured diffs: theory and practice
ICFP PC@ SLC

Victor Cacciari Miraldo, Pierre-Evariste Dagand,
Giovanni Garufi, Marco Vassena and Wouter Swierstra

Faculty of Science
Information and Computing Sciences

2

The diff utility

The Unix diff utility compares two files line-by-line,
computing the smallest number of insertions and deletions
to transform one into the other.

It was developed as far back as 1976 – but still forms the
heart of many modern version control systems such as git,
mercurial, svn, and many others.

Faculty of Science
Information and Computing Sciences

3

Example: comparing two files

slc-teams.csv

Real Salt Lake, Soccer

Utah Jazz, Basketball

Salt Lake Bees, Baseball

slc-teams-fixed.csv

Real Salt Lake, Football
Utah Jazz, Basketball

Salt Lake Bees, Baseball

Faculty of Science
Information and Computing Sciences

3

Example: comparing two files

slc-teams.csv

Real Salt Lake, Soccer

Utah Jazz, Basketball

Salt Lake Bees, Baseball

slc-teams-fixed.csv

Real Salt Lake, Football
Utah Jazz, Basketball

Salt Lake Bees, Baseball

Faculty of Science
Information and Computing Sciences

4

Example: comparing two files

-Real Salt Lake, Soccer
+Real Salt Lake, Football
Utah Jazz, Basketball
Salt Lake Bees, Baseball

The diff utility computes a patch, that can be used to
transform the one file into the other.

Faculty of Science
Information and Computing Sciences

5

Smallest edit script

Crucially, diff always computes the smallest patch –
minimizing the number of insertions and deletions.

In other words, it tries to preserve as much information as
possible.

But sometimes it still doesn’t do a very good job.

Faculty of Science
Information and Computing Sciences

5

Smallest edit script

Crucially, diff always computes the smallest patch –
minimizing the number of insertions and deletions.

In other words, it tries to preserve as much information as
possible.

But sometimes it still doesn’t do a very good job.

Faculty of Science
Information and Computing Sciences

5

Smallest edit script

Crucially, diff always computes the smallest patch –
minimizing the number of insertions and deletions.

In other words, it tries to preserve as much information as
possible.

But sometimes it still doesn’t do a very good job.

Faculty of Science
Information and Computing Sciences

6

Example: comma separated values

slc-teams-fixed.csv

Real Salt Lake, Football
Utah Jazz, Basketball
Salt Lake Bees, Baseball

How would this file change if I add a new column?

Faculty of Science
Information and Computing Sciences

7

Example: comma separated values

-Real Salt Lake, Football
+Real Salt Lake, Football, 2004
-Utah Jazz, Basketball
+Utah Jazz, Basketball, 1979
-Salt Lake Bees, Baseball
+Salt Lake Bees, Baseball, 1994

Adding a new column changes every line in our original file.
Where conceptually, we are not modifying any existing data.
Not all data is best represented by a list of lines!

This is particularly important when using diff to compare
source code.

Faculty of Science
Information and Computing Sciences

7

Example: comma separated values

-Real Salt Lake, Football
+Real Salt Lake, Football, 2004
-Utah Jazz, Basketball
+Utah Jazz, Basketball, 1979
-Salt Lake Bees, Baseball
+Salt Lake Bees, Baseball, 1994

Adding a new column changes every line in our original file.
Where conceptually, we are not modifying any existing data.

Not all data is best represented by a list of lines!

This is particularly important when using diff to compare
source code.

Faculty of Science
Information and Computing Sciences

7

Example: comma separated values

-Real Salt Lake, Football
+Real Salt Lake, Football, 2004
-Utah Jazz, Basketball
+Utah Jazz, Basketball, 1979
-Salt Lake Bees, Baseball
+Salt Lake Bees, Baseball, 1994

Adding a new column changes every line in our original file.
Where conceptually, we are not modifying any existing data.
Not all data is best represented by a list of lines!

This is particularly important when using diff to compare
source code.

Faculty of Science
Information and Computing Sciences

8

What is the diff over structured data?

Faculty of Science
Information and Computing Sciences

9

Questions

▶ How can we represent a family of data types?
▶ How can we represent patches on these data types?
▶ Does this give a better account of software evolution?

Faculty of Science
Information and Computing Sciences

10

Questions

▶ How can we represent a family of data types?
▶ How can we represent patches on these data types?
▶ Does this give a better account of software evolution?

Faculty of Science
Information and Computing Sciences

11

Universe of discourse

We will use Agda as our metalanguage to answer these
questions and start by fixing a ‘sums of products’ universe:

data Atom : Set where
K : U -> Atom
I : Atom

Prod : Set
Prod = List Atom

Sum : Set
Sum = List Prod

Here we assume some ‘base universe’ U, storing the atomic
types such as integers, characters, etc.

Faculty of Science
Information and Computing Sciences

12

Semantics

We can interpret these types as pattern functors:

elA : Atom -> (Set -> Set)
elA I X = X
elA (K u) X = elU u

elP : Prod -> (Set -> Set)
elP [] X = Unit
elP (a :: as) X = Pair (elA alpha X) (elP pi X)

elS : Sum -> (Set -> Set)
elS [] X = Empty
elS (p :: ps) X = Either (elP p X) (elS ps X)

Faculty of Science
Information and Computing Sciences

13

Fixpoints

Given any element of our ‘sums of products’ universe, we
can compute the corresponding pattern functor.

Taking the least fixpoint of this functor allows us to tie the
recursive knot:

data Fix (s : Sum) : Set where
<_> : elS s (Fix s) -> Fix s

Faculty of Science
Information and Computing Sciences

14

Example: 2-3 trees

We can represent 2-3-trees defined as follows:

data Tree : Set where
leaf : Tree
2-node : Nat -> Tree -> Tree -> Tree
3-node : Nat -> Tree -> Tree -> Tree -> Tree

by the following sum-of-products:

tree23F : Sum
tree23F = let leafT = []

node2T = [K NAT , I , I]
node3T = [K NAT , I , I , I]

in [leafT , node2T , node3T]

Faculty of Science
Information and Computing Sciences

15

Questions

▶ How can we represent a family of data types?
▶ How can we represent patches on these data types?
▶ Does this give a better account of software evolution?

Faculty of Science
Information and Computing Sciences

16

2-3-trees

treeA = 2-node 7 t1 t2

treeB = 3-node 12 (2-node 7 t1 leaf) leaf leaf

What edit script should transform treeA to treeB?

It is not just a list of insertions and deletions!

We can insert new constructors, modify values stored in the
tree, delete subtrees, or copy over existing data.

We will use a type indexed data type to account for changes.

Faculty of Science
Information and Computing Sciences

16

2-3-trees

treeA = 2-node 7 t1 t2

treeB = 3-node 12 (2-node 7 t1 leaf) leaf leaf

What edit script should transform treeA to treeB?

It is not just a list of insertions and deletions!

We can insert new constructors, modify values stored in the
tree, delete subtrees, or copy over existing data.

We will use a type indexed data type to account for changes.

Faculty of Science
Information and Computing Sciences

17

Representing diffs

Our universe consists of three separate layers:

▶ sums
▶ products
▶ atomic values

We’ll define what it means to modify each of these layers –
from these pieces we can define our overall type for diffs.

Faculty of Science
Information and Computing Sciences

18

Spines: changes to sums

Given two arbitrary tree structures, x and y, we can identify
the following three cases:

1. x and y are equal;
2. x and y the same outermost constructor, but are not
equal trees;

3. x and y have a different outermost constructor.

To represent patches, we need a data type that describes
these three cases.

But what information should each constructor record?

Faculty of Science
Information and Computing Sciences

18

Spines: changes to sums

Given two arbitrary tree structures, x and y, we can identify
the following three cases:

1. x and y are equal;
2. x and y the same outermost constructor, but are not
equal trees;

3. x and y have a different outermost constructor.

To represent patches, we need a data type that describes
these three cases.

But what information should each constructor record?

Faculty of Science
Information and Computing Sciences

19

Spines

Assuming that we know what patches on atoms (pAt) and
products (pAl) are we can define:

data S (σ : Sum) : Set where
Scp : S σ
Scns : (C : Constr σ)

-> All pAt (fields C)
-> S σ

Schg : (C1 C2 : Constr σ)
-> pAl (fields C1) (fields C2)
-> S σ

We still need to define how to diff products and atoms.

Faculty of Science
Information and Computing Sciences

20

Alignments: changes to products

If we have reconciled the choice of constructor, how to we
compare the constructor fields?

Each value constructed in our universe has a list of fields –
the product structure.

Given two such lists, we need to compare them somehow.

Yet these fields may store values of very different types!

The good news, however, is that we can reuse ideas from
the classic diff algorithm at this point.

Faculty of Science
Information and Computing Sciences

20

Alignments: changes to products

If we have reconciled the choice of constructor, how to we
compare the constructor fields?

Each value constructed in our universe has a list of fields –
the product structure.

Given two such lists, we need to compare them somehow.

Yet these fields may store values of very different types!

The good news, however, is that we can reuse ideas from
the classic diff algorithm at this point.

Faculty of Science
Information and Computing Sciences

20

Alignments: changes to products

If we have reconciled the choice of constructor, how to we
compare the constructor fields?

Each value constructed in our universe has a list of fields –
the product structure.

Given two such lists, we need to compare them somehow.

Yet these fields may store values of very different types!

The good news, however, is that we can reuse ideas from
the classic diff algorithm at this point.

Faculty of Science
Information and Computing Sciences

21

Alignments: changes to products

To describe a change from one list of constructor fields to
another, we require an edit script that:

▶ copies over fields;
▶ deletes fields;
▶ inserts new fields.

Faculty of Science
Information and Computing Sciences

22

Alignments

data Al : Prod → Prod → Set where
A0 : Al At [] []
AX : At α → Al π2 π1 → Al At (α :: π2) (α :: π1)
Adel : elA a → Al π2 π1 → Al (α :: π2) π1
Ains : elA a → Al π2 π1 → Al π2 (α :: π1)

A value of type Al π2 π1 prescribes which fields of one
constructor are matched with which fields of another.

Faculty of Science
Information and Computing Sciences

23

Atoms

Finally, we still need to handle our atomic values.

For constant types, we can check if they are equal or not.

But what about recursive subtrees?

Faculty of Science
Information and Computing Sciences

23

Atoms

Finally, we still need to handle our atomic values.

For constant types, we can check if they are equal or not.

But what about recursive subtrees?

Faculty of Science
Information and Computing Sciences

24

Handling recursive data types

So far our spines compare the outermost constructors.

Oftentimes, you may want to delete certain constructors
(exposing its subtrees) or insert new constructors.

We cannot handle such changes with the data types we
have seen so far…

Faculty of Science
Information and Computing Sciences

25

Accounting for recursion

Our final patch type identifies three cases:

1. The insertion of a new constructor, together with
all-but-one of its fields;

2. The deletion of the outermost constructor, together
with all-but-one of its fields;

3. A choice of spine, alignment, and a patch on atomic
values;

The first two require additional information – a context – to
point out where to insert/delete a subtree.

Faculty of Science
Information and Computing Sciences

26

Applying patches

We can define generic operations – such as patch
application – that applies a patch to a given tree:

apply : Patch → Fix σ → Maybe (Fix σ)

This patch is guaranteed to preserve types.
It may still fail – when encountering an unexpected
constructor or atomic value – but it will never produce
ill-formed data.

Faculty of Science
Information and Computing Sciences

27

Questions

▶ How can we represent a family of data types?
▶ How can we represent patches on these data types?
▶ Does this give a better account of software evolution?

Faculty of Science
Information and Computing Sciences

28

Case study: Clojure

▶ We’ve instantiated this algorithm to a simplified Clojure
AST in Haskell;

▶ By implementing a simple Clojure parser, we can now
compare Clojure programs.

▶ And by mining the commit history of the top Clojure
repositories on GitHub, we can try to quantify the
performance our algorithm.

Faculty of Science
Information and Computing Sciences

28

Case study: Clojure

▶ We’ve instantiated this algorithm to a simplified Clojure
AST in Haskell;

▶ By implementing a simple Clojure parser, we can now
compare Clojure programs.

▶ And by mining the commit history of the top Clojure
repositories on GitHub, we can try to quantify the
performance our algorithm.

Faculty of Science
Information and Computing Sciences

29

Collect data

A) False conflicts – two changes to the same line that do
not overlap in the AST

B) Fixable conflicts – two changes to the same atomic
value, where knowing the abstract syntax tree allows us
to resolve them automatically/interactively.

C) True conflicts – two atomic values (integers, variables,
etc.) changed in different ways

Faculty of Science
Information and Computing Sciences

30

Results

Faculty of Science
Information and Computing Sciences

31

Interpreting these results

▶ Conflicts are rare! 452 conflicts found in tens of
thousands of commits.

Or perhaps hard to observe as rebasing can rewrite history,
complicated pull requests abandoned, etc.

▶ Structure aware algorithms can beat line-based diff

But performance of our algorithm is still lagging behind.

Faculty of Science
Information and Computing Sciences

31

Interpreting these results

▶ Conflicts are rare! 452 conflicts found in tens of
thousands of commits.

Or perhaps hard to observe as rebasing can rewrite history,
complicated pull requests abandoned, etc.

▶ Structure aware algorithms can beat line-based diff

But performance of our algorithm is still lagging behind.

Faculty of Science
Information and Computing Sciences

31

Interpreting these results

▶ Conflicts are rare! 452 conflicts found in tens of
thousands of commits.

Or perhaps hard to observe as rebasing can rewrite history,
complicated pull requests abandoned, etc.

▶ Structure aware algorithms can beat line-based diff

But performance of our algorithm is still lagging behind.

Faculty of Science
Information and Computing Sciences

32

Questions?

