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EWD 879

The day was closed by P. Martin-Löf… But the 50 minutes were not enough to introduce an

ignorant audience to intuitionistic type theory to the extent that it could follow a comparison

with Scottery. He was a very sympathetic speaker and convinced at least me that something

(possibly even of great conceptual elegance) was going on.
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Aim of our paper

Can we give a constructive account of

Dijkstra’s weakest precondition semantics

in Martin-Löf type theory?
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A predicate transformer semantics for effects

• A predicate on type a is some value of type

a → Set

• A predicate transformermaps predicates to predicates:

(a → Set) → (b → Set)

• A predicate transformer semantics assigns a predicate transformer to

wp : (a → b) → (b → Set) → (a → Set)

wp = ·

Or more generally, using dependent types

wp : ((x : a) → b x) → (∀ x → b x → Set) → (a → Set)
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Effects
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Effectful programs

We’re not only interested pure functions.

Inspired by work on algebraic effects, we are careful separate syntax and semantics.

• A free monad fixes the syntax;

• the semantics is defined by a predicate transformer.

Our paper describes the syntax and semantics for a variety of different effects in this style:

• exceptions

• mutable state

• non determinism

• general recursion
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Free monads

data Free (C : Set) (R : C → Set) (a : Set) : Set where

Pure : a → Free C R a

Step : (c : C) → (R c → Free C R a) → Free C R a

• A set C of commands;

• A function R : C → Set of responses associated with every command.

Different choices of C and R give arise to different effects.

8



Free monads: examples

• Exceptions

• Commands Abort : C

• Responses ⊥

• State

• Commands Get : C and Put : s → C

• Responses s for Get and ⊤ for Put

• Non-determinism

• Commands Choice : C and Fail : C

• Responses Bool for Choice and ⊥ for Fail

• General recursion on a function I → O

• Commands call : I → C

• Responses O
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Semantics for effects

Given our wp function, we compute the weakest precondition associated with a Kleisli arrow:

wp : (a → Free C R b) → (Free C R b → Set) → (a → Set)

But the postcondition here is expressed as a predicate on a free monad.

What happened to keeping syntax and semantics separate?

We’d like to define semantics with the following type:

(a → Free C R b) → (b → Set) → (a → Set)

To do so, requires a predicate transformer semantics for effects:

(b → Set) → (Free C R b → Set)
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Semantics for effects – exceptions

wpPartial : (a → Partial b) → (b → Set) → (a → Set)

wpPartial f P = wp f (mustPT P)

where

mustPT : (b → Set) → (Partial b → Set)

mustPT P (Pure y) = P y

mustPT P (Step Abort ) = ⊥

Here Partial refers to the free monad with a single command, Abort.

This semantics produces preconditions that guarantee Abort never happens.

But other choices exist!

• Replace ⊥ with ⊤
• Require that P holds for some default value d : a

• …
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Semantics for effects – non-determinism

allPT : (P : b → Set) → (ND b → Set)

allPT P (Pure x) = P x

allPT P (Step Fail k) = ⊤
allPT P (Step Choice k) = allPT P (k True) ∧ allPT P (k False)

Here we require P to hold for every possible result.

But again, alternatives exist.

The gambler’s nondeterminism replaces ⊤ with ⊥ and ∧ with ∨

The paper defines similar predicate transformers for state, general recursion, etc.
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Semantics for effects

This shows how to assign a weakest precondition semantics to Kleisli arrows:

(a → Free C R b) → (b → Set) → (a → Set)

But why bother with such semantics in the first place?

• We can also assign predicate transformer semantics to specifications;

• And use this semantics prove that a program satisfies its specification;

• Or even derive a program from its specification.
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Specifications
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Specifications

We define the following datatype of specifications on a function of type (x : a) → b x

record Spec (a : Set) (b : a → Set) : Set where

field

pre : a → Set

post : (x : a) → b x → Set

• A precondition consisting of a predicate on a

• A postcondition consisting of a relation between (x : a) and b x.

I’ll often write such specifications as [ pre , post ].

But how can we assign semantics to such specifications?
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Semantics for specifications

wpSpec : Spec a b → (P : (x : a) → b x → Set) → (a → Set)

wpSpec [ pre , post ] P = λ x → (pre x) ∧ (∀ y → post x y → P x y)

We can relate programs and specifications by relating the corresponding predicate transformers.
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Refinement

17



Refinement calculus

(Source: wikipedia page on Formal specification)
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Refinement

Given two predicate transformers, we can use the refinement relation to compare them:

_⊑_ : (pt1 pt2 : (b → Set) → (a → Set)) → Set

pt1 ⊑ pt2 = forall P x → pt1 P x → pt2 P x

This relation is reflexitive, transitive and (morally) asymmetric.

Proving a program p satisfies it specification s amounts to showing:

wpSpec s ⊑ wpEffect p
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Refinements between programs

Not only can relate a program with its specification, but we can also compare two different

programs using the refinement relation.

• For partial functions, f ⊑ g precisely when f and g agree on the domain of f;

• For non-deterministic functions, f ⊑ g is equivalent to the subset relation.

• The gambler’s non-deterministic semantics flips f and g.

• For state, f ⊑ g corresponds to the usual weaker-pre’s and stronger-posts.

20



Compositionality of refinement

Pure functional programmers are spoiled. We’re used to referential transparency, which allows us

to employ equational reasoning.

For all sensible predicate transformers, refinement is inherently compositional.

compositionality : (f1 f2 : a → Free C R b) (g1 g2 : b → Free C R c) →
wp f1 ⊑ wp f2 →
wp g1 ⊑ wg g2 →
wp (f1 >=> g1) ⊑ wp (f2 >=> g2)
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Program verification

wpSpec [pre,post] ⊑

c

cwp c

In this fashion we can show a program—given by a Free C R a—satisfies some specification.

But can we calculate a program from its specification?

Let’s consider values of the type Free C R (a + Spec a)

We can assign them semantics by composing the semantics for specifications and effects.
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Program calculation

[pre,post]

⊑
c

s1 s2
⊑

c

c’

s3 s4 s5

s2 ⊑

c

c’

s4 s5

s2

Typically, we prove little lemmas showing how each individual choice of command gives rise to

new specifications, for which we must subsequently derive programs.

This style of calculation relies heavily on the compositionality of our semantics.

Even if you’re not interested in program calculation, this gives you a ‘small-step debugger’ that you

can use during verification.
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Conclusion

If we know the semantics of an effect,

And have a pre- and post spec,

Taking their predicate transformers combined,

The spec can be refined,

To ensure that our programs ain’t rekt.
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