
A predicate transformer semantics for effects

A Research Agenda for Formal Methods in the Netherlands

Wouter Swierstra and Tim Baanen

Utrecht University

1

2

EWD 879

The day was closed by P. Martin-Löf… But the 50 minutes were not enough to introduce an

ignorant audience to intuitionistic type theory to the extent that it could follow a comparison

with Scottery. He was a very sympathetic speaker and convinced at least me that something

(possibly even of great conceptual elegance) was going on.

3

EWD 879

The day was closed by P. Martin-Löf… But the 50 minutes were not enough to introduce an

ignorant audience to intuitionistic type theory to the extent that it could follow a comparison

with Scottery. He was a very sympathetic speaker and convinced at least me that something

(possibly even of great conceptual elegance) was going on.

3

Aim of this talk

• Sketch how to give a constructive account of Dijkstra’s weakest precondition semantics in

Martin-Löf type theory

• Motivate why we would ask this question in the first place.

4

Programming language and proof assistant

Martin-Löf type theory — the basis for modern proof assistants such as Coq, Agda, Idris, Lean and

others – is a language for proofs and programs

plus-commutes : ∀ n m → n + m ≡ m + n

To prove a lemma, amounts to showing that the corresponding type is inhabited.

5

Programming, but not as we know it

plus-commutes : ∀ n m → n + m ≡ m + n

plus-commutes n m = plus-commutes n m

While this definition is type correct, it is ruled out (and rightly so).

The ‘programming language’ in most proof assistants requires all functions to be total.

• No exceptions;

• No mutable state;

• No concurrency;

• No missing cases;

• No general recursion;

• …

6

Programming, but not as we know it

plus-commutes : ∀ n m → n + m ≡ m + n

plus-commutes n m = plus-commutes n m

While this definition is type correct, it is ruled out (and rightly so).

The ‘programming language’ in most proof assistants requires all functions to be total.

• No exceptions;

• No mutable state;

• No concurrency;

• No missing cases;

• No general recursion;

• …

6

Termination woes

In a richly typed language - there’s much more structure to exploit!

‘If your recursion isn’t structural, you’re using the wrong structure’ – Conor McBride

f91 : Int → Int

f91 n = if 100 < n then n - 10 else f91 (f91 (n + 11))

But there are plenty of programs that we’d like to study, even if their recursive definition is very

strange indeed!

7

Termination woes

In a richly typed language - there’s much more structure to exploit!

‘If your recursion isn’t structural, you’re using the wrong structure’ – Conor McBride

f91 : Int → Int

f91 n = if 100 < n then n - 10 else f91 (f91 (n + 11))

But there are plenty of programs that we’d like to study, even if their recursive definition is very

strange indeed!

7

Algebraic effects

Algebraic effects have recently gained traction in the wider programming languages community.

• Separate syntax and semantics of effects;

• The syntax merely describes the different primitive operations;

• The semantics assigns meaning to these operations.

In this talk, I’ll sketch how to assign a predicate transformer semantics to such effects.

And show how to model recursion as an algebraic effect.

8

Algebraic effects

Algebraic effects have recently gained traction in the wider programming languages community.

• Separate syntax and semantics of effects;

• The syntax merely describes the different primitive operations;

• The semantics assigns meaning to these operations.

In this talk, I’ll sketch how to assign a predicate transformer semantics to such effects.

And show how to model recursion as an algebraic effect.

8

A predicate transformer semantics for effects

• A predicate on type a is some value of type

a → Set

• A predicate transformermaps predicates to predicates:

(a → Set) → (b → Set)

• A predicate transformer semantics assigns a predicate transformer to

wp : (a → b) → (b → Set) → (a → Set)

wp = ·

Or more generally, using dependent types

wp : ((x : a) → b x) → (∀ x → b x → Set) → (a → Set)

9

A predicate transformer semantics for effects

• A predicate on type a is some value of type

a → Set

• A predicate transformermaps predicates to predicates:

(a → Set) → (b → Set)

• A predicate transformer semantics assigns a predicate transformer to

wp : (a → b) → (b → Set) → (a → Set)

wp = ·

Or more generally, using dependent types

wp : ((x : a) → b x) → (∀ x → b x → Set) → (a → Set)

9

A predicate transformer semantics for effects

• A predicate on type a is some value of type

a → Set

• A predicate transformermaps predicates to predicates:

(a → Set) → (b → Set)

• A predicate transformer semantics assigns a predicate transformer to

wp : (a → b) → (b → Set) → (a → Set)

wp = ...

wp : (a → b) → (b → Set) → (a → Set)

wp = ·

Or more generally, using dependent types

wp : ((x : a) → b x) → (∀ x → b x → Set) → (a → Set)

9

A predicate transformer semantics for effects

• A predicate on type a is some value of type

a → Set

• A predicate transformermaps predicates to predicates:

(a → Set) → (b → Set)

• A predicate transformer semantics assigns a predicate transformer to

wp : (a → b) → (b → Set) → (a → Set)

wp = ·

Or more generally, using dependent types

wp : ((x : a) → b x) → (∀ x → b x → Set) → (a → Set)

9

A predicate transformer semantics for effects

• A predicate on type a is some value of type

a → Set

• A predicate transformermaps predicates to predicates:

(a → Set) → (b → Set)

• A predicate transformer semantics assigns a predicate transformer to

wp : (a → b) → (b → Set) → (a → Set)

wp = ·

Or more generally, using dependent types

wp : ((x : a) → b x) → (∀ x → b x → Set) → (a → Set)

9

Recursion as an effect

data Rec (I : Set) (O : Set) (a : Set) : Set where

Pure : a → Rec I O a

Call : I → (O → Rec I O a) → Rec I O a

The Rec I O a data type explicitly models computations that may make calls to a (recursive)

‘oracle’ of type I → O, before returning a value of type a.

A function of type I → Rec I O O corresponds to a function where the ‘recursive’ calls are made

explict.

It’s easy to show that this type is a monad, for any choice of I and O.

10

Example

Written using the do notation, we can define our f91 function as follows.

f91 i = do

x ← call (i + 11)

call x

This gives a finite representation of a recursive program.

This definition itself is not recursive – but we can:

• produce a coinductive trace by repeatedly unfolding the definition on a given input;

• run the computation for a fixed number of steps;

• prove it terminates using well-founded recursion;

• …

11

Beyond recursion…

Many other effects can be described in this fashion:

• Exceptions

• State

• Non-determinism

Each of these effects give rise to a free monad describing their syntax.

We can assign each of these effects a predicate transformer semantics

(b → Set) → (Free b → Set)

Combined with the wp function we saw previously, we can compute the weakest precondition

necessary for a particular program to produce a result satisfying the desired postcondition.

But what semantics should we assign to recursion?

12

Beyond recursion…

Many other effects can be described in this fashion:

• Exceptions

• State

• Non-determinism

Each of these effects give rise to a free monad describing their syntax.

We can assign each of these effects a predicate transformer semantics

(b → Set) → (Free b → Set)

Combined with the wp function we saw previously, we can compute the weakest precondition

necessary for a particular program to produce a result satisfying the desired postcondition.

But what semantics should we assign to recursion?

12

Specifications

We define the following datatype of specifications on a function of type a → b

• A precondition consisting of a predicate on a

• A postcondition consisting of a relation between a and b.

I’ll often write such specifications as [pre , post].

We can even assign predicate transformer semantics to such specifications.

13

Semantics for specifications

wpSpec : Spec a b → (b → Set) → (a → Set)

wpSpec [pre , post] P = λ x → (pre x) ∧ (∀ y → post y → P y)

We can relate programs and specifications by relating the corresponding predicate transformers.

14

Sketching the semantics for recursion

Using this, we can even give semantics to our recursive functions:

Given the desired spec of the recursive function – we need to show that the ‘call graph’

representation respects the corresponding ‘loop invariant’.

Unsurprisingly, to assign meaning to recursive functions, we need some hint from the

programmer.

We can prove that, for example, when the weakest precondition holds and we run a function for n

steps and it does terminate, the desired post also holds.

15

Refinement

Given two predicate transformers, we can use the refinement relation to compare them:

⊑ : (pt1 pt2 : (b → Set) → (a → Set)) → Set

pt1 ⊑ pt2 = forall P x → pt1 P x → pt2 P x

This relation is reflexitive, transitive and (morally) asymmetric.

Proving a program p satisfies it specification s amounts to showing:

wpSpec s ⊑ wpEffect p

16

Refinements between programs

Not only can relate a program with its specification, but we can also compare two different

programs using the refinement relation.

• For partial functions, f ⊑ g precisely when f and g agree on the domain of f;

• For non-deterministic functions, f ⊑ g is equivalent to the subset relation.

• The gambler’s non-deterministic semantics flips f and g.

• For state, f ⊑ g corresponds to the usual weaker-pre’s and stronger-posts.

17

Compositionality of refinement

Pure functional programmers are spoiled. We’re used to referential transparency, which allows us

to employ equational reasoning.

For all sensible predicate transformers, refinement is inherently compositional.

compositionality : (f1 f2 : a → Free b) (g1 g2 : b → Free c) →
wp f1 ⊑ wp f2 →
wp g1 ⊑ wg g2 →
wp (f1 >=> g1) ⊑ wp (f2 >=> g2)

18

Compositionality of refinement

Pure functional programmers are spoiled. We’re used to referential transparency, which allows us

to employ equational reasoning.

For all sensible predicate transformers, refinement is inherently compositional.

compositionality : (f1 f2 : a → Free b) (g1 g2 : b → Free c) →
wp f1 ⊑ wp f2 →
wp g1 ⊑ wg g2 →
wp (f1 >=> g1) ⊑ wp (f2 >=> g2)

18

Program verification

wpSpec [pre,post] ⊑

c

cwp c

In this fashion we can show a program—given by a Free a—satisfies some specification.

But can we calculate a program from its specification?

Let’s consider values of the type Free (a + Spec a)

We can assign them semantics by composing the semantics for specifications and effects.

19

Program verification

wpSpec [pre,post] ⊑

c

cwp c

In this fashion we can show a program—given by a Free a—satisfies some specification.

But can we calculate a program from its specification?

Let’s consider values of the type Free (a + Spec a)

We can assign them semantics by composing the semantics for specifications and effects.

19

Program calculation

[pre,post]

⊑
c

s1 s2
⊑

c

c’

s3 s4 s5

s2 ⊑

c

c’

s4 s5

s2

Typically, we prove little lemmas showing how each individual choice of command gives rise to

new specifications, for which we must subsequently derive programs.

This style of calculation relies heavily on the compositionality of our semantics.

Even if you’re not interested in program calculation, this gives you a ‘small-step debugger’ that you

can use during verification.

20

Program calculation

[pre,post] ⊑
c

s1 s2

⊑

c

c’

s3 s4 s5

s2 ⊑

c

c’

s4 s5

s2

Typically, we prove little lemmas showing how each individual choice of command gives rise to

new specifications, for which we must subsequently derive programs.

This style of calculation relies heavily on the compositionality of our semantics.

Even if you’re not interested in program calculation, this gives you a ‘small-step debugger’ that you

can use during verification.

20

Program calculation

[pre,post] ⊑
c

s1 s2
⊑

c

c’

s3 s4 s5

s2

⊑

c

c’

s4 s5

s2

Typically, we prove little lemmas showing how each individual choice of command gives rise to

new specifications, for which we must subsequently derive programs.

This style of calculation relies heavily on the compositionality of our semantics.

Even if you’re not interested in program calculation, this gives you a ‘small-step debugger’ that you

can use during verification.

20

Program calculation

[pre,post] ⊑
c

s1 s2
⊑

c

c’

s3 s4 s5

s2 ⊑

c

c’

s4 s5

s2

Typically, we prove little lemmas showing how each individual choice of command gives rise to

new specifications, for which we must subsequently derive programs.

This style of calculation relies heavily on the compositionality of our semantics.

Even if you’re not interested in program calculation, this gives you a ‘small-step debugger’ that you

can use during verification.

20

Program calculation

[pre,post] ⊑
c

s1 s2
⊑

c

c’

s3 s4 s5

s2 ⊑

c

c’

s4 s5

s2

Typically, we prove little lemmas showing how each individual choice of command gives rise to

new specifications, for which we must subsequently derive programs.

This style of calculation relies heavily on the compositionality of our semantics.

Even if you’re not interested in program calculation, this gives you a ‘small-step debugger’ that you

can use during verification.

20

Program calculation

[pre,post] ⊑
c

s1 s2
⊑

c

c’

s3 s4 s5

s2 ⊑

c

c’

s4 s5

s2

Typically, we prove little lemmas showing how each individual choice of command gives rise to

new specifications, for which we must subsequently derive programs.

This style of calculation relies heavily on the compositionality of our semantics.

Even if you’re not interested in program calculation, this gives you a ‘small-step debugger’ that you

can use during verification.

20

Conclusions

• Programming in proof assistants is not always easy;

• But we have the formal methods to make it feasible.

21

Conclusions

• Programming in proof assistants is not always easy;

• But we have the formal methods to make it feasible.

21

A predicate transformer semantics for effects

A Research Agenda for Formal Methods in the Netherlands

Wouter Swierstra and Tim Baanen

Utrecht University

22

Semantics for effects – exceptions

wpPartial : (a → Partial b) → (b → Set) → (a → Set)

wpPartial f P = wp f (mustPT P)

where

mustPT : (b → Set) → (Partial b → Set)

mustPT P (Pure y) = P y

mustPT P (Step Abort) = ⊥

Here Partial refers to the free monad with a single command, Abort.

This semantics produces preconditions that guarantee Abort never happens.

But other choices exist!

• Replace⊥ with⊤
• Require that P holds for some default value d : a

• …

23

Semantics for effects – exceptions

wpPartial : (a → Partial b) → (b → Set) → (a → Set)

wpPartial f P = wp f (mustPT P)

where

mustPT : (b → Set) → (Partial b → Set)

mustPT P (Pure y) = P y

mustPT P (Step Abort) = ⊥

Here Partial refers to the free monad with a single command, Abort.

This semantics produces preconditions that guarantee Abort never happens.

But other choices exist!

• Replace⊥ with⊤
• Require that P holds for some default value d : a

• … 23

Semantics for effects – non-determinism

allPT : (P : b → Set) → (ND b → Set)

allPT P (Pure x) = P x

allPT P (Step Fail k) = ⊤
allPT P (Step Choice k) = allPT P (k True) ∧ allPT P (k False)

Here we require P to hold for every possible result.

But again, alternatives exist.

The gambler’s nondeterminism replaces⊤ with⊥ and ∧ with ∨

The paper defines similar predicate transformers for state, general recursion, etc.

24

Semantics for effects – non-determinism

allPT : (P : b → Set) → (ND b → Set)

allPT P (Pure x) = P x

allPT P (Step Fail k) = ⊤
allPT P (Step Choice k) = allPT P (k True) ∧ allPT P (k False)

Here we require P to hold for every possible result.

But again, alternatives exist.

The gambler’s nondeterminism replaces⊤ with⊥ and ∧ with ∨

The paper defines similar predicate transformers for state, general recursion, etc.

24

Semantics for effects – non-determinism

allPT : (P : b → Set) → (ND b → Set)

allPT P (Pure x) = P x

allPT P (Step Fail k) = ⊤
allPT P (Step Choice k) = allPT P (k True) ∧ allPT P (k False)

Here we require P to hold for every possible result.

But again, alternatives exist.

The gambler’s nondeterminism replaces⊤ with⊥ and ∧ with ∨

The paper defines similar predicate transformers for state, general recursion, etc.

24

Semantics for effects

Given our wp function, we compute the weakest precondition associated with a Kleisli arrow:

wp : (a → Free C R b) → (Free C R b → Set) → (a → Set)

But the postcondition here is expressed as a predicate on a free monad.

What happened to keeping syntax and semantics separate?

We’d like to define semantics with the following type:

(a → Free C R b) → (b → Set) → (a → Set)

To do so, requires a predicate transformer semantics for effects:

(b → Set) → (Free C R b → Set)

25

Semantics for effects

Given our wp function, we compute the weakest precondition associated with a Kleisli arrow:

wp : (a → Free C R b) → (Free C R b → Set) → (a → Set)

But the postcondition here is expressed as a predicate on a free monad.

What happened to keeping syntax and semantics separate?

We’d like to define semantics with the following type:

(a → Free C R b) → (b → Set) → (a → Set)

To do so, requires a predicate transformer semantics for effects:

(b → Set) → (Free C R b → Set)

25

26

