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Abstract

In this paper, we investigate the dynamics and interaction properties of recently discovered “embedded solitons”
in an extended fifth-order KdV model inspired by water waves in the presence of surface tension. The dynamical
behaviour of the solitons can be efficiently followed by using a moving or an adaptive finite difference mesh
in combination with a suitable time-integrator. We will demonstrate this numerically for different types of wave
solutions, such as solitary waves, multihumped waves, and interacting waves.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, there has been considerable interest in the numerical treatment of partial differential
equations (PDEs) describing nonlinear wave phenomena, and particular types of solitary waves. In this
study, we focus our attention on an extended fifth-order Korteweg–de Vries (KdV) equation that can be
used to model water waves with surface tension. The model is described by the PDE

ut + 2
15 uxxxxx + (�u − b)uxxx + (3u + 2�uxx)ux = 0 (1)
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for −∞ < x < ∞, t > 0. In 1997, Champneys and Groves[2] studied the global existence properties of
solitary wave solutions to Eq. (1), which can also be written in conservative form:

ut + [ 2
15 uxxxx − buxx + (3

2)u2 + �((1
2)(ux)

2 + (uux)x)]x = 0. (2)

This is a special case of a more general class of Hamiltonian evolution equations studied by Kichenassamy
and Olver[10]. For � = 0 this reduces to the usual fifth-order KdV equation introduced by Kawahara
[9]. The extended form (1) may be derived via a regular Hamiltonian perturbation theory from an exact
Euler equation formulation for water waves with surface tension[4]. Looking for traveling-wave solutions
u(x − ct), integrating once, setting the constant of integration to be zero, one arrives at the following
ODE (the prime standing for d/d� with � := x + at),

2
15 u′′′′ − bu′′ + au + 3

2 u2 + �[1
2 (u′)2 + (uu′)′] = 0, (3)

wherea := −c. Nonzero values of� can be scaled to plus or minus unity. For the rest of this work we
shall take the sign value that is significant for water waves in the presence of surface tension and hence set
�=1. Physically,u(x, t) represents the height of the free surface of a 2D slab of fluid of finite depth. The
parameterb and dimensionless wave speeda are related to the difference between the Bond and Froude
numbers respectively from their critical values(1

3, 1).
In this paper, we shall treat different cases for the parametersa and b. The first case witha < 0

describes waves that travel to the right. This is of interest because any true solitary wave (i.e. homoclinic
solution to the travelling-wave ODE (3) with exponentially decaying tails) must, according toYang et al.
[17,3,18], be anembedded soliton(ES) (note that the term “soliton” is used here in its physical rather
than mathematical sense, since Eq. (1) is not completely integrable). That is, the solitary wave of the PDE
(1) exists in resonance with the linear spectrum. This condition manifests itself in the travelling wave
ODE (3) as the origin being of saddle-centre type, that is possessing both real and imaginary eigenvalues.
Yang et al.[17] discovered by a formal energy argument in the context of a particular second-harmonic
generation model from nonlinear optics that such solutions may be weakly stable linearly, but nonlinearly
semistable. The semistability property states that an ES may be stable to perturbations which increase
the solitary wave’s energy, but unstable to perturbations that reduce it. This interesting property can be
verified with numerical experiments as we shall see in Section 2.

Recently Yang[16] discovered ESs in other generalised fifth-order KdV models, using soliton pertur-
bation theory near various integrable limits. He also demonstrated with this technique that the simplest
such solutions do indeed possess this semistability.

The aim of the present study is to undertake an indepth numerical investigation into the properties of the
ESs and other types of solitary waves existing in the particular form of extended fifth-order KdV equation
(1). Specifically in[2,1] it was found numerically that there are a countable sequence of curves on which
ESs exist; seeFig. 1. Note that only solutions on the uppermost curve could be described as “fundamental”
ESs (i.e. having a single-humped shape). All other solutions, which appear to be fundamental as they
tend to zero amplitude in the limita → 0 for b < 0, increase in amplitude on increasingband in so doing
develop internal oscillations in their profiles (i.e. having a multihumped shape). See the insets toFig. 1
which depict the profiles in the large-amplitude limita → 0 with b > 0. Note that the small-amplitude
limit is highly singular and the analytical determination of those values ofb < 0 leads to “bifurcations”
of ES into the regiona > 0. This is a subtle problem to analyse analytically (it is also a hard problem
numerically, as witnessed by the solution loci ending short of the axis in the left-hand portion ofFig. 1).
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Fig. 1. The region of existence of the embedded solitons for Eq. (3) with� = 1.

Nevertheless, it is straightforward to determine that the fundamental wave bifurcates atb = −1
2, because

in fact this solution is given by the explicit expression

u(x, t) = 3

(
b + 1

2

)
sech2

(√
3(2b + 1)

4
(x + at)

)
, a = 3

5
(2b + 1)(b − 2), b� − 1

2
. (4)

We can recognize three different sub-cases depending on the sign of the parameterb: −1
2 < b < 2 the

soliton moves from left to right,b = 2 a motionless soliton andb > 2 a soliton that moves to the left.
Note that this curve of exact solutions is also defined fora > 0(b > 2)and indeed each of the numerically

computed curves inFig. 1 can be continued intoa > 0. Here the solutions represent so-calledorbit-flip
solitary waves which exist inside a continuum of(a, b)-values at which there exist other solitary waves,
but are distinguished by the faster rate of decay of their tails.

The layout of the paper is as follows. In the next section we present two different numerical approaches
to the extended KdV5 model. The first one follows the solitons in a moving coordinate system, whereas
the second method adapts the spatial mesh points to the solution profile itself. In Section 3 numerical
experiments with the adaptive mesh method are shown for the case of embedded solitons, and also
multihumped wave solutions. In Section 4 we present our conclusions.
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2. Numerical methods

We shall employ two different numerical methods for PDE (1), both aiming at following the spatial
and temporal profiles of the PDE solutions.

2.1. A uniformly moving mesh method

A rather straightforward technique can be constructed by making use of the constant speed−a of the
solution as defined in (4) to define a moving (Lagrangian) co-ordinate system. This method is selected for
its simplicity, but has strong limitations, i.e. it can only be used to follow a solution moving at constant
speed in one direction.

2.1.1. A moving co-ordinate transformation
We apply a co-ordinate transformation to the Eulerian co-ordinate system(x, t) of independent vari-

ables. For this purpose, we define� = �(x, t) = x + at, � = t to arrive at the Lagrangian co-ordinates
(�, �). Here,−a is the velocity of the moving frame which we shall take to be the speed−a of the ES
under consideration. For the explicit solution (4),a is related tob by the given formula. Applying the
transformation to PDE (1) and lettingU(�, �) denote the dependent variable in the new co-ordinates
yields

U� + aU � + 2
15 U����� + (�U − b)U��� + (3U + 2�U��)U� = 0. (5)

The reason for re-writing the PDE is a numerical one, and can be simply illustrated by the following
example. InFig. 2 (left plot) two numerical solutions are shown in both co-ordinate systems for the
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Fig. 2. Fixed uniform mesh vs. moving uniform mesh results (left) with 1001 meshpoints,b = 0, att = 20. In the right plot we
see clearly the effect of absorbing (“AbsBC”) vs. nonabsorbing BCs (“DirBC”).



P. Saucez et al. / Journal of Computational and Applied Mathematics 183 (2005) 343–357 347

same number of mesh points in the spatial direction and the same initial data, given by (4). It is clearly
seen that the solution on a moving uniform mesh is superior to the fixed uniform mesh solution, since
the numerical approximation follows the soliton “exactly” with the right speed. The fixed uniform mesh
method produces unnatural oscillations at the right foot of the soliton, which further on in the computations
will cause a breakdown of the method. It must be noted that the above-described approach can only be
used for motion in one direction. For waves or solitons that, for example, develop in different directions, or
that move with different speeds, more sophisticated methods have to be applied, such as solution-adaptive
mesh techniques (see[5,19,20,14,12]). Such a method will be discussed in Section 2.2.

2.1.2. Boundary conditions
For the numerical solution of the PDE model, we need to impose boundary conditions at finite distance

from the soliton, i.e. at both endpointsx = xL andx = xR. Since we take our boundaries “far away”
from the soliton, it could be tempting to take merely zero conditions forU and its first derivatives at each
end. However, since we would like to investigate the long-time behaviour of the soliton, and, in some
cases, we add “noise” to investigate the stability properties, it is better to use so-called absorbing- or
transport boundary conditions. Ideally, absorbing conditions let the incoming wave, pulse, or radiation
go through the boundary, without reflection that could break up the numerical PDE solution later on in
the computation. A first-order transport (or absorbing) condition (see[13]) can be described by

ut + cgux = 0, (6)

wherecg stands for the group velocity of the expected disturbance. In the moving co-ordinate system this
condition transforms into

U� + (cg + a)U� = 0. (7)

In our numerical experiments we expect the group velocity of the incoming radiation to be approxi-
matelycg ≈ −a, which gives the boundary conditionU� ≈ 0.

For negative values of the parametera (these solitons move towards the right-hand boundary), we
impose therefore the conditionU� =0 atx =xR. At the left-hand end we takeU =U� =U�� =0 atx =xL.

To illustrate the possible effects of different boundary conditions on the numerical solution, we display
in Fig. 2 (right plot) the solution for a typical run on a moving uniform mesh with nonabsorbing and
one with an absorbing boundary, again using the explicit solution as initial data. We see that using the
nonabsorbing boundary conditions cause either numerical rounding errors or explicitly imposed noise on
the initial solution, reflection at the right boundary (the noise or radiation reflects back into the domain as
if the right boundary acts as a solid wall). With a transport or absorbing boundary condition this effect is
almost negligible. It may be obvious that this effect is even more pronounced when using a fixed uniform
mesh.

2.1.3. Numerical solution of the PDE
For the numerical solution of the time-dependent PDE (5) we use the method of lines, which consists

of two steps. First, Eq. (5) and the boundary conditions are semidiscretized in the spatial direction
using standard finite differences. For example, the fifth-order derivative is approximated by fourth-order
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central differences:

uxxxxx,i ≈
[
−1

6
ui+4 + 3

2
ui+3 − 13

3
ui+2 + 29

6
ui+1

−29

6
ui−1 + 13

3
ui−2 − 3

2
ui−3 + 1

6
ui−4

]/
h5, with h = xR − xL

N − 1
, (8)

whereNdenotes the number of spatial meshpoints.The lower-order spatial derivatives are treated similarly
by fourth-order central differences. Discretizing all the terms in the spatial direction yields a large system
of stiff ODEs. Since in the fifth-order derivative approximation a factor 1/h5 appears, we note that this
ODE system will beverystiff for small values of the meshsizeh. In the second step an “appropriate”
integration method has to be used to obtain the fully discrete numerical solution of the PDE in space
and time. For this purpose, we use the numerical integrator DASSL (see[11]) which is specifically well
suited to stiff systems. The integrator makes use of variable timestepping and variable order (up to order
5) of the underlying BDF methods. In DASSL we set the time tolerance to be TOL= 10−5.

2.1.4. Initial conditions
As initial conditions we take exact ES solutions, either obtained from the formula (4) or via accurate

numerical integration of the ODE (3) plus a perturbation. We take a specific form of perturbation. Instead
of starting withU |�=0 we take as initial solution

U |�=0[1 + �(1 + A sin(��))], (9)

where� is an “offset” parameter that determines the size and sign of the perturbation to the energy of the
solitary wave. The results which follow were not found to be highly sensitive to the oscillatory part of
the perturbation, and all the results below are presented forA = 1 and frequency� = 0.5.

2.1.5. Numerical results with the moving uniform mesh method
In Fig. 3 we show results for the caseb = 0 and� = 0 (no perturbation of the initial exact solution)

for an increasing number of meshpoints. It is clear from this picture that, in order to obtain accurate
solutions with a nonadaptive method, we need to apply an enormous amount of meshpoints.N = 40 001
meshpoints are used in the continuation of our numerical experiments. InFigs. 4, 5 and6, the time-
dependent behaviour of the solution is depicted forb = 0, and different values of the offset parameter�.
Fig. 4 (� = 0; no perturbation of the initial solution) seems to indicate a stable behaviour of the explicit
solution given by formula (4). However, if we take a look atFig. 6(with �=−0.01; small negative energy
perturbation) we see that the solution damps out quickly to a tiny positive skew pulse accompanied with
an envelope solution that is moving to the right. If we add a small positive energy (� = +0.01) instead,
the perturbation remains “forever” (at least tillt = 300) at the right foot of the moving soliton (seeFig.
5). This interesting behaviour has been called semistability (see the introductory section) and can also be
numerically simulated with the adaptive mesh method introduced in the next section.

2.2. An adaptive mesh method

The second method does not make use of the exact speed of the solitons, but re-arranges the spatial
mesh point distribution in such a way that the spatial profile is resolved very accurately at every point of
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time. This so-called adaptive mesh refinement (AMR) algorithm equidistributes a given monitor function
subject to constraints on the mesh regularity. Specifically, a spatial meshxi , i = 1, 2, . . . , N , is built so
as to equidistribute a specified monitor functionm(u), i.e∫ xi

xi−1

m(u) dx =
∫ xi+1

xi

m(u) dx = p, 2�i�N − 1, (10)

wherep is a constant.
Various forms of monitor function, based on the solution arc-length or curvature, have been proposed.

Here, an arc-length monitor function is used, i.e.

m(u) =
√

� + ‖ux‖2
2, (11)

where� > 0 ensures that the monitor function is strictly positive and acts as a regularization parameter
which forces the existence of at least a few nodes in flat parts of the solution.

The spatial derivatives of PDE (1) in Eulerian coordinates are approximated using finite difference
approximations on nonuniform meshes[6]. The accuracy of the spatial derivative approximations and the
stiffness of the semidiscrete system of differential equations are largely influenced by the regularity and
spacing of the mesh points. This stresses the importance of limiting mesh distortion in such a way that

1

K
�

�xi

�xi−1
�K, 2�i�N − 1, (12)

where�xi = xi+1 − xi is the local mesh spacing, andK is a constant.
To achieve such spatial regularization, a “monitor padding” procedure due to Kautsky and Nichols[8]

is used here.
Time integration of the semidiscrete system of stiff ODEs is accomplished using the variable step,

fifth-order, implicit Runge–Kutta solver RADAU5[7]. Time integration is halted periodically, i.e. every
Nadaptintegration steps, to refine the spatial mesh. More details on the adaptive mesh method can also be
found in[15].

3. Numerical simulations with the adaptive mesh

We now investigate the dynamics of slightly perturbed solitary and multihumped waves using the
adaptive mesh method described in the previous section. Besides the dynamics of the solutions themselves,
we will also monitor the temporal behaviour of three known invariants of this PDE model. The invariants
are given by the following integrals:

Invariant 1 (conservation of mass for the water waves):I1 := ∫∞
−∞ u dx.

Invariant 2 (conservation of the horizontal momentum):I2 := ∫∞
−∞ u2 dx.

Invariant 3 (conservation of the energy):I3 := ∫∞
−∞[ 1

15 u2
xx + 1

2 u3 + 1
2 u2

x{b
2 − u}] dx.

IntegralI1 is trivially conserved. This follows directly from the fact that the PDE model can be written
in the formut + Xx = 0; see (2). Assuming thatX → constant as|x| → ∞ and integrating by parts
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gives(d/dt)
∫∞
−∞ u dx = 0. Since (1) is a Hamiltonian PDE, it also conservesI2. Further, if we name the

HamiltonianH = I3, Eq. (2) is equivalent with

ut = J−1 �H

�u
, (13)

with a skew-symmetric operatorJ−1 = �/�x, i.e.J−1 = −J=JT. The variational derivative in (13) is
given by

�H

�u
=

∞∑
k=0

(−1)k
(

d

dx

)k �H

�ukx

= �H

�u
− d

dx

�H

�ux

+ d2

dx2

�H

�uxx

− · · · . (14)

If we define the Poisson brackets

{T,S} =
∫

�

�T

�u
J

�S

�u
,

then it follows that{T,S}=−{S,T}. To show thatH is invariant, we work out the following relations
(the functionf is the integrand ofI3):

dH

dt
= d

dt

∫
�

f dx=
∫

�

[
�f

�u
ut+ �f

�ux

utx+ �f

�uxx

utxx + · · ·
]

dx=
∫

�

�H

�u
ut dx={H,H}=0.

(15)

3.1. Embedded solitons (a < 0)

3.1.1. Varying the parameter b along the uppermost curve 1 in Fig. 1
For the caseb = 0, we have seen that the moving uniform mesh is able to accurately describe different

solution features, and particularly the semistability of the solitons. Numerical experiments with the fully
adaptive mesh method confirm these results. In the nonperturbed case, efficient computation can be
achieved with the following parameter values:� = 0,p = 0.0005,K = 1.03 andNadapt= 1. The number
of meshpoints then varies around 6500 (which is to be compared with the 40 001 points required by the
moving uniform mesh). If less accuracy is required, the number of meshpoints can be reduced to about
1000 by increasingK up to 1.1.

When a positive or negative energy perturbation is added, the observations are essentially the same. In
the case of a negative energy perturbation, we see that the solution damps out quickly to a tiny positive
skew pulse accompanied with an envelope solution that is moving to the right. After some point of time,
the PDE solution can be approximated asymptotically by (assumingu small andu5x dominating)

ut + 2
15 uxxxxx = 0, (16)

which can be interpreted in terms of similarity solutions and integrals of Airy-type functions. Looking
at Fig. 6, we can estimate the group velocity of the envelope and compare it with the theoretical group
velocity coming from an asymptotic dispersion relation. These two are in very good agreement.

In Figs. 7and8, runs for different (negative and positive)b-values (without noise) are depicted. These
figures show both the evolution of the solution (upper graphs) and the evolution of the spatial mesh
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(bottom graphs), which concentrate into the soliton. We observe that the numerical PDE solution seems
to be stable for long periods of time. These observations are supported by runs where noise was added
(just as for theb=0 situation earlier). However, computation is more demanding and delicate for positive
b-values than for negativeb-values.Fig. 8 shows that the spatial mesh not only follows the soliton, but
also gets more and more densely populated along the right tail of the soliton. A closer look at the solution
in this region shows spurious oscillations, which can be eliminated through the use of denser grids.
However, the computational load increases rapidly, making such an analysis impractical. The situation
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corresponding tob = 2 is an exception, as it corresponds to a motionless soliton, which is relatively easy
to capture with the adaptive mesh method.

3.2. Multihumped waves (along other curves 2–4 in Fig. 1)

We now consider solutions on the other curves represented inFig. 1. Particularly,Fig. 9 shows the
evolution of the solution corresponding tob = 0 anda =−2.747732, i.e. a particular point on the second
curve which corresponds to a “two-hump” soliton travelling from left to right. This solution is computed
by the adaptive mesh method with the following parameter values:�=0,p=0.007,K=1.1 andNadapt=1.
About 930 mesh points are required.Fig. 9 also shows the evolution of the invariantsI1, I2, I3, as well
as the soliton amplitudevmax, which all remain constant (up to 3 significant digits). We also performed
simulation runs with positive or negative energy perturbations, and the solution appears stable under
both perturbations. Similar observations hold for the subsequent solution curves inFig. 1. However, it is
difficult to conclude about the stability of solutions on the fourth curve, i.e. negative energy perturbations
generate an oscillatory behaviour of the peak of the soliton.

3.3. Multiple solitons (a > 0)

We now make some investigations for positivea-values, i.e. in the upper part ofFig. 1. In this case,
the solution behaviour can be particularly intriguing. We first consider the parameter valuesb = 1.5 and
a=2, and two different initial conditions. The first one is a “single soliton”, whose evolution is illustrated
in Fig. 10 at t = 0, 1, . . . , 21. In addition, the figure shows the evolution of the invariants, which all
remain constant on the considered time interval. The second one is a “double soliton” whose behaviour,
illustrated inFig. 11at t = 0, 5, 6, . . . , 12, is quite complex and features several “phases”.Fig. 12shows
the evolution of the solution invariants on a somewhat longer time interval. These numerical solutions
are again computed by the adaptive mesh method with� = 0, p = 0.007,K = 1.1 andNadapt= 1. The
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Fig. 10. “Single soliton” solution (left), invariantsI1, I2, I3 and soliton amplitudevmax (right) with the adaptive mesh method
in the caseb = 1.5, a = 2, att = 0, 1, 2, . . . , 21.
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Fig. 11. “Double soliton” solution with the adaptive mesh method in the caseb = 1.5, a = 2, att = 0, 5, 6, . . . , 12.

number of mesh points is about 2500 in the first case, and varies between 4500 and 5500 in the second
case. Simulation runs with positive and negative energy perturbations demonstrate the stability of these
solutions. Finally, we considerb = 3 anda = 2, and a “triple soliton” initial condition.Fig. 13shows the
solution evolution att = 9, 10, . . . , 17, which is again quite intriguing.
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Fig. 12. “Double soliton” solution—invariantsI1, I2, I3 and soliton amplitudevmax.
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Fig. 13. “Triple soliton” solution with the adaptive mesh method in the caseb = 3, a = 2, att = 9, 10, . . . , 17.

4. Conclusions

In this paper, we have successfully applied moving and adaptive mesh methods for the numerical
solution of an extended fifth-order KdV model describing (water) waves and solitons in the presence of
surface tension. We have seen that a variety of solutions exist for which existence and stability properties
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can be investigated numerically. Analytic and asymptotic theory would be needed to support the obtained
numerical results. Particularly, eigenvalue computations could give more information about the stability
of the different waves that have been computed.
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