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The coronal loop problem is characterized by mixed boundary conditions and the loop length condition, 
which is global. Using singular perturbation methods one can identify and construct two boundary layers 
at the base of the loop. 

Extending this to a combined asymptotic-numerical treatment it is possible to construct two static 
solutions satisfying the same conditions; this unusual feature arises from the presence of the first boundary 
layer, which corresponds with a steep temperature gradient and an energy balance dominated by 
conduction and radiation losses. 

1. Introduction 

The behaviour of a hot plasma, confined to a magnetic loop as observed in the solar 
corona, has been the subject of various modelling attempts and explicit calculations. 
In this note we extend and correct the study by Pakkert et al. [2] where a model has 
been formulated, see also this paper for a full list of references. Another discussion and 
some related problems can be found in [3]. 

Observations from outside the atmosphere of the Earth during the Skylab missions 
produced soft X-ray pictures revealing that the corona of the sun is highly structured. 
One of the features is the presence of a hot plasma confined to quite persistent 
magnetic loops, see Fig. 1. The longevity of the hot plasma naturally leads to its 
modelling in terms of a static energy balance between conductive energy transport, 
heating and radiative losses; see the energy balance equation (1). As the strong 
magnetic field dominates completely the dynamics of the plasma, the behaviour of the 
plasma is considered to be one dimensional. 

The first term in equation (1) is based on the well established theory of thermal 
conduction in plasmas, the third term corresponds to calculations of radiative losses 
in thin, hot plasmas by several authors; see for details [2]. For lack of a consistent 
theory at  present the heating losses are usually represented by a positive constant a. In 
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Fig. 1. Coronal loop 

the future one would replace this constant by a positive function of T; this would not 
seriously affect the mathematics of this paper. 

Equation (2) has been formulated assuming that gravity everywhere is parallel to 
the magnetic field. This slightly overestimates the influence of gravity at  the top of the 
loop but we note that the plasma is extremely thin at  the top. The equations for static 
solutions become in this way: 

+ a - P 2 ~ ( T )  = 0, 

d P  
dz 
-= -My, 

in which T is the temperature in the loop, P the pressure, both made dimensionless; 
z is a spatial mass coordinate such that z=O corresponds to the base of the loop, 
z = 1 corresponds to the summit. The positive constant a is a dimensionless para- 
meter indicating the heating rate, x(T)  is the radiative loss function; M is the total 
mass per unit surface area, g the gravitational constant. The dimensionless parameter 
E is small, E x lo-' for the solar corona, and is among others proportional to the 
thermal conductivity of the plasma. 

The first constraints are the boundary conditions 

with To a small positive constant. Another constraint is the loop length condition, 

Io' f dz = Lo. (4) 

In the case of the solar corona we have Lo = 10. 
The static problem, consisting of the equations (1-2) together with the constraints 

( 3 4 ) ,  is non-standard and no general theory is available. It is interesting to note that 
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recently Hulshof et al. [ 13 proved the existence of monotonically increasing solutions 
T(z) of problem (1-4); P(0) is restricted to a certain range of values. These authors do  
not exclude the existence of non-monotonic solutions. 

In section 2 we shall supplement and correct the analysis in [2] by showing that 
near the base of the loop there are two adjacent boundary layers where the temper- 
ature increases very quickly when moving upward in the loop; in these thin layers the 
pressure is nearly constant. In section 3, guided by the asymptotic expansions, we 
present numerical calculations. Also we show that the type of radiative loss function 
required in this model triggers off the existence of non-monotonic solutions apart 
from the monotonic solution found in [l]. This second solution of equations (1-2) 
with conditions (3-4) bifurcates off the first boundary layer at the base of the loop. 

2. Boundary layers near the base of the loop 

The radiative loss function z ( T )  used in [2] for the solar corona takes the form 

z (T )  = P o ~ - 6 T 5 ,  

x ( T )  = Pi T -’, 
To < T < 7; 
To 2 T. 

Po and PI  are constants which are 0(1) with respect to the small parameter E and 
which have been chosen such that z ( T )  is continuous; for the solar corona we took as 
the ‘unit’ of temperature 2 x 10’ K and T = 0.1. To give an explicit numerical 
calculation we shall use this form of x(T). We stress however that, as in [l], the 
analysis applies to a wide range of realistic radiative loss functions. 

Near the base of the loop, for To < T 4 T, we can start with the analysis in [2] 
where no boundary layer near z = 0 has been assumed to exist. They assume that near 
the base of the loop thermal conductivity plays no part. This means that locally the 
solution of equation (1) can be approximated by 

a - P 2 z ( T )  = 0. 

This relation yields the temperature behaviour 

It turns out that the solutions thus obtained do not produce high enough temper- 
atures to be of practical interest. The alternative is that near the base of the loop a thin 
layer, a boundary layer, exists where we have a steep temperature gradient and 
therefore a notable thermal conductivity. The appropriate scaling for To 4 T 4 7 is 

T =  E’T, z = c a r  with 0 < v < 1, a =- 0. 
Equation (1) takes in this domain the form 

Equation (2) becomes 
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As CT > 0, the pressure is to first order constant: P ( ( )  = Po. In equation ( 5 )  a significant 
degeneration arises if 

1 + ~ v - ~ c T =  - 6 + 5 ~ .  

The terms dominating the energy balance in the boundary layer are conduction and 
radiation loss, the heating plays no part to first order. 

The size of the boundary layer depends on To and 7. In the case of the solar corona 
it makes sense to take v = $, so that CT = q; this means that the size of the boundary 
layer in space is of order E ” / * .  Equation ( 5 )  reduces in first order to 

which can be integrated to produce in the original variables z and T 

with c a constant. 
The phase-plane of equation (7) corresponding to the integral (8) is given in Fig. 2. 
Solutions of type I1 (Fig. 2) are not interesting as T decreases, whereas solutions of 

types I and 111 are of interest. When the solution T(z) reaches the value T = t, 
equation (1) changes its form and the analysis has to be repeated. 

- lo00 

Fig. 2. The T, dT/dz phase-plane in the first boundary layer showing monotonically increasing solutions 
(I), monotonically decreasing solutions (11) and solutions (111) that initially decrease followed by increase 

with z 
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2.1. The second boundary layer 

In the case T 3 T equation (1) becomes 

T and z are still small so we scale again: T = &"f, z = ~ " q .  Note that we have to take 
p > 0 as the solution arrives at T = T with a steep temperature gradient. The pressure 
P will still be constant to first order in this second boundary layer for the same reason 
as before. Equation (9) becomes 

On taking T = 0.1 or v = f the radiative loss term still dominates the heating; it is 
balanced by the conduction if 

1 + $1, - 2p = - 5v (significant degeneration) 

or p = y. So the second boundary layer is slightly larger, O(d7/') in space. With this 
choice, equation (10) reduces in first order to 

dT 
dz 

T 

c 

0 1 .o + T  

Fig. 3. The K dT/dz phase-plane in the second boundary layer; solutions start at T = 5 (for the Sun, 
T = 0.1) after which the temperature increases monotonically 
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which can be integrated to produce in the original variables z and T 

with d a constant. The phase-plane of equation (11) corresponding with the integral 
(12) is given in Fig. 3. We see that, starting with a positive temperature gradient, this 
quantity remains positive but decreases towards zero. 

At the same time the temperature steadily increases until the radiation losses 
become dominated by the heating. The transition takes place in a neighbourhood of a 
temperature Th given by 

a = /j1P,2Tc5. (13) 
From this stage on, the analysis in [2] (termed there domain 111) applies: conduction 
and heating dominate, there is no spatial boundary layer. The integral describing the 
behaviour of pressure and temperature is 

&p2($>’ T 3  + 4uT7/2 = e, 

with e a constant and P(z) = Po - Mgz. Equation (14) can be integrated again to 
produce a relation between P (or z) and T. It follows that the maximum temperature 
T,,, arises at z = 1 with 

T,,, = ( 7 e / 4 ~ ) ~ ’ ~ .  (15) 

3. Numerical results 

The ideas developed in the preceding sections are useful in producing numerical 
results. As in [2] we took values of the constants applicable to the solar corona: 
E = 2.5 x 10-2,a = 0.65, My = 0.4,/j0 = 3.81 x 10-4,/j, = 1.56 x = 0.1. We 
use a ‘shooting’ procedure by adding to the boundary values T(0) = To, the value 
P(0) = Po and the derivative dT/dz(O) with large values (from lo3 to lo4). The 
solutions of equations (1-2) have to satisfy the boundary value dT/dz(l) = 0 and the 
loop length condition (4). We find a monotonic solution shown in Fig. 4. 

This combined asymptotic-numerical approach can be used to obtain a general 
insight in the static solutions. We start by omitting the first boundary layer and by 
considering the solutions from To = 0.1 on with a positive temperature gradient. 

Equations (1-2) have been solved with this boundary condition at z = 0, dT/dz(l) 
= 0 and 0.6 < P o  < 1.76. This has been carried out by using a stiff ordinary 

differential equation (ODE) solution from a standard software package; to find the 
appropriate boundary values at z = 0 we applied Newton’s method. The relation 
between Po and dT/dz(O) corresponding to these solutions has been depicted in Fig. 5. 

Each point of the curve of Fig. 5 corresponds to a solution with different loop length 
Lo. In Fig. 6 we give the corresponding loop lengths and, as a quantity of interest, the 
maximum temperature T,,, from equation (15). A lower pressure near z = 0 requires a 
higher temperature gradient in the boundary layer near the base of the loop; it 
produces a longer loop with a correspondingly higher temperature at the summit. 
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r 
t 

Fig. 4. Monotonically increasing solution T(z) with T(0) = 0.1, P(0)  = 1.0, dT(O)/dz = 11228.59, T, = 13.3 
( z 2.66 x lo6 K), L = 13.8 ( z 1.3 x lO"m~) 

dT 
dz 

-(O). lo-' 

t 

4 Po 

Fig. 5. Relation between Po and dT/dz(O) for solutions of equations (1-2) with boundary conditions (3) 
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Fig. 6. Maximum temperature T, and loop length Lo as functions of Po for solutions of equations (1-2) and 
boundary conditions (3) 

As a second point of interest we show that we can construct two solutions satisfying 
equations (1-2) and conditions (3-4). To achieve this we start again with To = 0.1 at 
z = 0 but with a negative temperature gradient. This puts the solutions in the first 
boundary layer described in section 1 and, for a range of negative temperature 
gradients, the solutions are of type 111. 

From equation (8) we derive that T takes a minimum value, 
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Solution 1 0.1 + 277.492 1.74988 0.1 5.3625 2.8143 0 
Solution 2 0.1 - 275.429 1.75000 0.0966 5.3636 2.8143 0 

After reaching this minimum value the temperature rises again until T = 0.1 where 
dT/dz > 0; from this point on the temperature increases monotonically, resulting in a 
certain loop length Lo. 

From Figs 5 and 6 we can find a solution that is monotonically increasing for 
0 < z < 1 and that satisfies the same conditions (3-4). Thus, we have found two 
solutions of our problem, which answers a question posed in [l], remark 2.4. As an 
example we present the parameter values of such a case in Table 1. It is rather 
surprising that a negative temperature gradient can be changed into a positive 
temperature gradient in such a small spatial domain as the first boundary layer. 

The maximum temperature of the second solution corresponds to 1.07 x lo6 K, the 
loop length Lo to 2.15 x lo9 cm. 

An interesting question that remains is the following. If two static solutions exist, it 
may be expected that at most one of them is stable. Is this the case and which one is 
stable? This question will be left to future research. 
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