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In this paper we describe the application of the homotopy perturbation method (HPM) to 

two-point boundary-value problems with fractional-order derivatives of Caputo-type. We 

show that HPM is equivalent to the semi-analytical Adomian decomposition method when 

applied to a class of nonlinear fractional advection-diffusion-reaction models. A general 

expression is derived for the coefficients in the HPM series solution. Numerical experi- 

ments are given to demonstrate several properties of HPM, such as its dependence on the 

fractional order and the parameters in the model. In the case of more than one solution, 

HPM has difficulties to find the second solution in the model. Another example is given 

for which HPM seems to converge to a non-existing solution. 
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1. Introduction 

This paper is devoted to the analytical and numerical study of a semi-analytical technique known as the homotopy

perturbation method (HPM). The method was introduced by He [1–4] , For general nonlinear boundary-value models, it is

almost impossible to derive exact solutions. Even if they are available, the calculations to obtain numerical values may

be cumbersome, or it may be difficult to interpret the behavior of the solution. HPM couples the traditional perturbation

method and homotopy in topology. This gives HPM a significant advantage to obtain an approximate solution to a wide

range of nonlinear problems. The method provides rapid convergent series solutions in most of the cases. Usually, already

a few iterations result in a high accurate solution. Recently, several new approximation methods in terms of infinite series

have been proposed. These methods include the Adomian decomposition method [5] , the variational iteration method [6] ,

the Exp -function method [7] , homotopy analysis method (HAM) [8,9] and HPM. Recent papers on HPM use local fractional

operators [10,11] and apply HPM to engineering problems [12,13] . HAM is a more general version of HPM and it gives the

HPM solution for a particular choice of the HAM parameter � . The present paper is devoted to the analysis and application

of HPM to a class of fractional-order boundary-value problems. 

2. A fractional-order advection-diffusion-reaction model 

In literature, many definitions of the fractional derivative have been proposed. The most common definitions of fractional

calculus are the Riemann–Liouville, Grünwald–Letnikov and Caputo definitions [14–16] . Recently, three other definitions have

been introduced [17–19] . 
∗ Corresponding author. 
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We consider the following fractional-order BV-model of Bratu-type with damping and source term [20–22] {
ε D 

α
C u + γ u 

′ + f (u ) = S(x ) , x ∈ [0 , 1] , 

u (0) = u L , u (1) = u R , 
(1) 

with parameters 1 < α ≤ 2, 0 < ε ≤ 1, and γ ∈ R . The nonlinear source term f : [0, ∞ ) → [0, ∞ ) is assumed to be continuous.

The function S ( x ) represents a spatially dependent source term. The solution u is a function u : [0, 1] → [0, ∞ ). Applications

stem, among others, from astrophysics and combustion theory. With D 

α
C 

, we denote a fractional derivative defined in the

Caputo sense (see Definition 4 below). The left three terms in differential Eq. (1) may be identified as fractional diffusion

(corresponding to Lévy-flight processes), advection (with velocity γ ) and a chemical reaction term represented by f . For

simplicity, the boundary conditions are taken to be of Dirichlet type. To define the fractional derivative we need first to set

up the function space of possible solutions and to derive some useful properties (see also [15] ): 

Definition 1. A real function g ( x ), x > 0, lies in the function space C γ , γ ∈ R , if there exists a real number p > γ such that

g can be written as g(x ) = x p g 1 (x ) with g 1 ( x ) ∈ C [0, ∞ ). It is clear that the property C γ1 
⊂ C γ2 

for γ 2 ≤ γ 1 holds. 

Definition 2. A function g ( x ), x > 0, lies in the function space C m 

γ , m ∈ N ∪ { 0 } , if g ( m ) ∈ C γ . 

Definition 3. The left-sided Riemann–Liouville fractional integral J 

α of order α ≥ 0 of a function g ∈ C γ , γ ≥ −1 is defined

as {
J 

αg(x ) = 

1 
�(α) 

∫ x 
0 

g(t) 
(x −t) 1 −α dt, α > 0 , x > 0 , 

J 

0 g(x ) = g(x ) , 
(2) 

where � denotes the Euler-gamma function that interpolates the factorial in integer values (with a shift of one unit): �(m +
1) = m ! , m ∈ N . 

Definition 4. Let g ∈ C m 

−1 
, m ∈ N ∪ { 0 } . Then the left-sided Caputo fractional derivative D 

α
C 

g is defined as 

D 

α
C g(x ) = J 

m −αg (m ) (x ) , m − 1 < α ≤ m, m ∈ N . (3)

The following properties for J 

α and D 

α
C 

can be derived [15] : ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

J 

αJ 

νg(x ) = J 

νJ 

αg(x ) = J 

α+ νg(x ) , α, ν ≥ 0 , g ∈ C γ , γ ≥ −1 , 

J 

αx δ = 

�(δ+1) 
�(δ+ α+1) 

x δ+ α, α > 0 , δ > −1 , x > 0 , 

D 

α
C J 

αg(x ) = g(x ) , 

J 

αD 

α
C g(x ) = g(x ) − ∑ m −1 

k =0 g (k ) (0 

+ ) x 
k 

k ! 
, m − 1 < α ≤ m, x > 0 , 

D 

α
C x 

δ = 

�(δ+1) 
�(δ−α+1) 

x δ−α, α > 0 , δ > −1 , x > 0 , 

(4) 

where g (k ) (0 + ) := lim x ↓ 0 g (k ) (x ) . The first result shows the so-called semi-group property of fractional integrals. The second

formula is a generalization of the integer counter-part: J 

m x k = 

k ! 
(m + k )! 

x k + m . The third and fourth properties indicate that J 

α

and D 

α
C 

are not each other’s inverses, unless a remainder term is zero. The fifth property is the derivative counterpart of

the second one. This can be forced, however, by further restricting the function space C m 

γ . The consistency of the fractional

derivative with respect to the traditional integer derivative can be expressed by the following result: 

Lemma 1. The Caputo fractional derivative D 

α
C 

with m − 1 < α ≤ m is consistent with the integer-order derivative d m 

dx m 
for m ∈ N .

Proof. For g ∈ C m +1 ([0 , ∞ ]) , we write 

D 

α
C } (§ ) = 

1 

�(m − α) 

∫ x 

0 

g (m ) (s ) 

(x − s ) 1 −(m −α) 
ds 

= 

1 

�(m − α) 

[
− (x − s ) m −α

m − α
g (m ) (s ) | s = x s =0 + 

∫ x 

0 

(x − s ) m −α

m − α
g (m +1) ( s ) ds 

]

= 

1 

�(m − α + 1) 

[
0 + x m −αg (m ) (0) + 

∫ x 

0 

(x − s ) m −αg (m +1) (s ) ds 

]
and taking the limit: α ∈ R → m ∈ N with m − 1 ≤ α ≤ m yields: 
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= 

1 

�(1) 

[
g (m ) (0) + 

∫ x 

0 

g (m +1) (s ) ds 

]
= g (m ) (0) + g (m ) (x ) − g (m ) (0) = 

d m g 

dx m 

(x ) . 

�

Note that the solution of boundary-value model (1) does not necessarily need to have a unique solution. It is known, for

example, that for exponential-type functions g there may be zero, one or two solutions, depending on a parameter in the

model (see [20,21] ). 

3. The homotopy perturbation method (HPM) 

In this section, we describe a semi-analytical technique to approximate solutions of model (1) . To explain the underlying

concept of approximating solutions of the BV-problems (1) , we first define a more general nonlinear differential equation by

D (u ) = h (x ) , x ∈ � ⊂ R (5)

with boundary conditions 

B 

(
u, 

∂u 

∂x 

)
= 0 , x ∈ ∂�. (6)

Here, D describes a differential operator, B a boundary operator, h a given analytic function and ∂� the boundary of the

spatial domain �, respectively. It is useful to divide the operator D into two parts which we denote by L and N , where L
is a linear operator and N the remaining nonlinear part of the operator. Eq. (5) may then be written as 

L (u ) + N (u ) = h (x ) . (7)

We construct a homotopy u (x ; p) : � × [0 , 1] → R which satisfies 

H(u ; p) := (1 − p)[ L (u ) − L (v 0 )] + p[ D (u ) − h (x )] = 0 . 

This is equivalent to 

H(u ; p) = L (u ) − L (v 0 ) + pL (v 0 ) + p[ N (u ) − h (x )] = 0 . (8)

In Eq. (8) , p ∈ [0, 1] represents a so-called embedding parameter, and v 0 can be viewed as an ‘initial’ approximation of the

original model (5) which satisfies boundary condition (6) . Obviously, from (7) and (8) it follows that {
H(u ; 0) = L (u ) − L (v 0 ) = 0 

H(u ; 1) = D (u ) − h (x ) = 0 . 
(9)

The process of deforming p from zero to unity in (8) is just the deformation of u ( x ; p ) from the chosen function u (x ; 0) =
v 0 (x ) to the solution u (x ; 1) = u (x ) of differential Eq. (5) . The term deformation stems from topology and the relation be-

tween the expressions L (u ) − L (v 0 ) and D (u ) − h (x ) is called a homotopy. According to the homotopy perturbation method,

the assumption is made that the solution of Eq. (8) can be written as a formal power series in the embedding parameter p :

u (x ; p) = v 0 (x ) + v 1 (x ) p + v 2 (x ) p 2 + · · · = 

∞ ∑ 

k =0 

v k (x ) p k . (10)

Finally, on setting p = 1 , this results in the formal solution 

u (x ) = lim 

p→ 1 
u (x ; p) = 

∞ ∑ 

k =1 

v k (x ) . (11)

Approximations to u ( x ) are obtained by truncating the infinite series to: 

u (x ) ≈ V N (x ) := 

N ∑ 

k =1 

v k (x ) . (12)

The described approximation technique is called the homotopy perturbation method (HPM). This method has the advantage

that it overcomes the limitations of the traditional perturbation methods, in which the used parameter is assumed to be

small. The convergence of series (10) depends on the nonlinear differential operator D . In general, the second derivative

with respect to u of the nonlinear part N in the splitting (7) must be sufficiently small, since the parameter p may be

relatively large, in fact we take p → 1. Furthermore, to ensure convergence of the series the following estimate [1] must

hold: ||L 

−1 ∂N 
∂v || < 1 . For more details on the convergence of HPM we refer to [1,23] . It may be clear from the construc-

tion above that the choice of the homotopy is not unique and therefore, the convergence (or divergence) also depends on
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that choice. Unfortunately, there exists no general theory yet to deal with this problem and each case has to be analyzed

separately. 

Next, we work out the described concept of HPM for boundary-value problem (1) . For this model we take the homotopy

defined by {
εD 

α
C u + p[ γ u 

′ + f (u ) − S(x )] = 0 , 1 < α ≤ 2 , 

u (0 ; p) = u L , u (1 ; p) = u R , p ∈ [0 , 1] . 
(13) 

To obtain subsequent approximations for v 0 , v 1 , . . . , we use series (10) , the linearity of the operator D 

α
C 

and a Taylor expan-

sion of the function f around u = 0 : 

f (u ) = f (0) + f ′ (0) u + f ′′ (0) 
u 

2 

2! 
+ · · ·

= f ′ (0) v 0 + 

f ′′ (0) 

2 

v 2 0 + 

f ′′′ (0) 

6 

v 3 0 + · · ·

+ p 

[ 
f ′ (0) v 1 + v 0 v 1 f ′′ (0) + 

5 

12 

v 2 0 v 1 f 
′′′ (0) + · · ·

] 
+ p 2 

[
f ′ (0) v 2 + (2 v 0 v 2 + v 2 1 ) 

f ′′ (0) 

2 

+ 

(
5 

2 

v 2 0 v 2 + 3 v 0 v 2 1 

)
f ′′′ (0) 

6 

+ · · ·
]

+ p 3 
[

f ′ (0) v 3 + (v 0 v 3 + v 1 v 2 ) f ′′ (0) + 

(
5 

2 

v 2 0 v 3 + 6 v 0 v 1 v 2 + v 3 1 

)
f ′′′ (0) 

6 

+ · · ·
]

+ O(p 4 ) . (14) 

Note that this expansion can also be derived by applying the theory of Schur polynomials as described in [24] . Substituting

(14) and (10) into (13) and collecting terms of equal power in the homotopy parameter p , we obtain {
p 0 : εD 

α
C v 0 = 0 , 

v 0 (0) = u L , v 0 (1) = u R ⇒ v 0 (x ) = u L + (u R − u L ) x 
(15) 

{
p 1 : εD 

α
C v 1 + γ v ′ 0 + v 0 f ′ (0) + 

1 
2 
v 2 0 f 

′′ (0) + 

1 
6 
v 3 0 f 

′′′ (0) + · · · − S(x ) = 0 , 

v 1 (0) = 0 , v 1 (1) = 0 ⇒ v 1 (x ) = · · · (16) 

{
p 2 : εD 

α
C v 2 + γ v ′ 1 + v 1 f ′ (0) + v 0 v 1 f ′′ (0) + 

5 
12 

v 2 0 v 1 f 
′′′ (0) + · · · = 0 , 

v 2 (0) = 0 , v 2 (1) = 0 ⇒ v 2 (x ) = · · · (17) 

⎧ ⎨ 

⎩ 

p 3 : εD 

α
C v 3 + γ v ′ 2 + v 2 f ′ (0) + 

1 
2 
(2 v 0 v 2 + v 2 1 ) f 

′′ (0) 

+ 

1 
6 
( 5 

2 
v 2 0 v 2 + 3 v 0 v 2 1 ) f 

′′′ (0) + · · · = 0 , 

v 3 (0) = 0 , v 3 (1) = 0 ⇒ v 3 (x ) = · · ·
(18) 

⎧ ⎨ 

⎩ 

p 4 : εD 

α
C v 4 + γ v ′ 3 + v 3 f ′ (0) + (v 0 v 3 + v 1 v 2 ) f ′′ (0) 

+ 

1 
6 
( 5 

2 
v 2 0 v 3 + 6 v 0 v 1 v 2 + v 3 1 ) f 

′′′ (0) + · · · = 0 , 

v 4 (0) = 0 , v 4 (1) = 0 ⇒ v 4 (x ) = ..., etcetera. 

(19) 

In each step, we apply a fractional integral (see Eqs. (2) and (4) ) to obtain the intermediate solutions V 0 (x ) , V 1 (x ) , . . . , V N (x ) .

The first nonlinear term in (14) is u 2 and yields 

u 

2 = 

( 

∞ ∑ 

n =0 

v n p n 
) ( 

∞ ∑ 

k =0 

v k p k 
) 

, 

= 

∞ ∑ 

n =0 

[ 

n ∑ 

i =0 

v i p i v n −i p 
n −i 

] 

, 

= 

∞ ∑ 

n =0 

[ 

n ∑ 

i =0 

v i v n −i p 
n 

] 

= 

∞ ∑ 

n =0 

[ 

n ∑ 

i =0 

v i v n −i 

] 

p n := 

∞ ∑ 

n =0 

w 

(2) 
n p n . (20) 

where w 

(2) 
n is a weight-function depending on products of the coefficients v n . For the term with u 3 in (14) we set 
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u 

3 = 

∞ ∑ 

n =0 

[ 

n ∑ 

i =0 

v i v n −i p 
n 

] ( 

∞ ∑ 

k =0 

v k p k 
) 

, 

= 

∞ ∑ 

n =0 

[ 

n ∑ 

i =0 

( 

i ∑ 

j=0 

v j v i − j 

) 

p i v n −i p 
n −i 

] 

, 

= 

∞ ∑ 

n =0 

[ 

n ∑ 

i =0 

( 

i ∑ 

j=0 

v j v i − j 

) 

v n −i 

] 

p n := 

∞ ∑ 

n =0 

w 

(3) 
n p n , (21)

and following similar steps for higher powers of u we can write 

u 

n = 

∞ ∑ 

r=0 

w 

(r) 
n p r , (22)

where 

w 

(r) 
n = 

n ∑ 

i =0 

[ 

i ∑ 

j 1 =0 

( 

j 1 ∑ 

j 2 =0 

... 

( 

j r−1 ∑ 

j r−2 =0 

v j r−1 
v j r−1 − j r−2 

) 

... 

) ] 

v n −i . 

Next, we substitute these expressions into Eq. (14) : 

f (u ) = f (0) + f ′ (0) 
∞ ∑ 

n =0 

v n p n + f ′′ (0) 

∑ ∞ 

n =0 w 

(2) 
n p n 

2! 
+ f ′′′ (0) 

∑ ∞ 

n =0 w 

(3) 
n p n 

3! 
+ ... 

= 

∞ ∑ 

m =0 

[ 

f (m ) (0) 

m ! 

∞ ∑ 

n =0 

w 

(m ) 
n p n 

] 

. (23)

Eq. (23) is a general formula which enables us to calculate the step solutions v k in HPM. To our knowledge, this the first

time such a general expression for the HPM solutions v k is explicitly written out. 

4. Theoretical results 

4.1. A comparison between HPM and the Adomian decomposition method 

In this section, we first present another semi-analytical method: the Adomian Decomposition Method (ADM) (see

[5,25,26,27] ). Although this method provides us a series solution from a different perspective, it has a strong relation with

the final HPM series. This is stated in the following lemma: 

Lemma 2. For boundary-value models of type (5) the series methods HPM and ADM yield equivalent expansions. 

Proof. We consider again the nonlinear BV-model (5) . According to ADM, we write u (x ) = v 0 (x ) + 

∑ ∞ 

n =1 v n (x ) . Here u 0 (x ) =
L 

−1 [ h (x )] and u n (x ) = −L 

−1 [ A n −1 (x )] , in which L 

−1 is the inverse operator of L 

−1 and A n ( x ) are the so-called Adomian

polynomials 

A n (x ) = 

1 

n ! 

[ 

∂ n 

∂ p n 
N 

( 

v 0 (x ) + 

∞ ∑ 

n =1 

v n (x ) p n 

) ] 

| p=0 . (24)

On the other hand, the general HPM formula is as follows: 

(1 − p) L [ u (x ; p) − v 0 (x )] = −p N [ u (x ; p ) − h (x )] , (25)

where u ( x ; p ) is a unknown dependent variable. It clearly holds u (x ; 0) = v 0 (x ) and u (x ; 1) = u (x ) . Then we expand u ( x ; p )

in a power series of p : 

u (x ; p) = v 0 (x ) + 

∞ ∑ 

n =1 

v n (x ) p n , and V n (x ) = 

1 

n ! 

∂ n u (x ; p) 

∂ p n 
| p=0 . (26)

Note that we have a great freedom to choose the initial approximation in HPM. First, we substitute p = 1 in (10) : 

u (x ) = v 0 (x ) + 

∞ ∑ 

n =1 

v n (x ) , (27)

which becomes the same in ADM. Then, we differentiate (25) n times with respect to p , divide by n ! and finally set p = 0 :

L [ v 1 (x )] = −N [ v 0 (x )] − h (x ) when n = 1 , and (28)
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L [ v n (x ) − v n −1 (x )] = − 1 

(n − 1)! 

∂ n N [ u (x ; p)] 

∂ p n 

∣∣∣∣
p=0 

, when n ≥ 1 . (29)

As we have mentioned before, we have a great freedom to choose the auxiliary linear operator and the initial guess. Then

we can choose: 

L = L 0 , v 0 (x ) = L 

−1 
0 [ g(x )] . (30)

We reorganize (28) and (29) to obtain: 

L 0 [ v 1 (x )] = h (x ) − L 0 [ v 0 (x )] − N 0 [ v 0 (x )] , (31)

and 

L 0 [ v n (x )] = L 0 [ v n −1 (x )] − 1 

(n − 1)! 

∂ n L 0 [ u (x ; p)] 

∂ p n 

∣∣∣∣
p=0 

− 1 

(n − 1)! 

∂ n N 0 [ u (x ; p)] 

∂ p n 

∣∣∣∣
p=0 

. (32) 

We recognize that 

h (x ) − L 0 [ v 0 (x )] = 0 , (33) 

from which it follows that 

L 0 [ v 1 (x )] = −A 0 (x ) , (34) 

according to the definition of Adomian polynomials. Making use of (26) , it holds 

L 0 [ v n −1 (x )] − 1 

(n − 1)! 

∂ n L 0 [ u (x ; p)] 

∂ p n 

∣∣∣∣
p=0 

= L 0 [ v n −1 (x )] − L 0 

[ 

1 

(n − 1)! 

∂ n [ u (x ; p)] 

∂ p n 

∣∣∣∣
p=0 

] 

= L 0 [ v n −1 (x )] − L 0 [ v n −1 (x )] 

= 0 . (35) 

Thus, Eq. (32) becomes 

L 0 [ v n (x )] = − 1 

(n − 1)! 

∂ n N 0 [ u (x ; p)] 

∂ p n 

∣∣∣∣
p=0 

. (36) 

We substitute (26) into the above expression, it becomes according to the definition of Adomian polynomials 

L 0 [ v n (x )] = − 1 

(n − 1)! 

[ 

∂ n 

∂ p n 
N 0 

( 

v 0 (x ) + 

∞ ∑ 

n =1 

v n (x ) p n 

) 

∣∣∣∣∣
p=0 

] 

= − A n −1 (x ) , (37) 

which proves that ADM is equivalent with HPM. �

4.2. Convergence of HPM 

Analyzing the convergence of series (11) in HPM is not trivial. It highly depends on the parameters in the underlying

model. In some cases it even diverges. In the case of a convergent series, it can be shown to converge very fast to the exact

solution of the nonlinear model. We will give an example to show the potentially fast convergence of HPM. 

Example 1 (‘Spectral’ convergence of HPM) . {
u 

′′ + u = g(x ) , 
u (0) = u (1) = 0 . 

(38) 

The exact solution reads for a given g ( x ): 

u 

∗(x ) = 

∞ ∑ 

n =1 

b n sin (nπx ) with b n = 2 

∫ 1 

0 

u 

∗(x ) sin (nπx ) d x (39)

and we take 

g(x ) = 

∞ ∑ 

n =1 

(1 − n 

2 π2 ) b n sin (nπx ) . (40) 
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Fig. 1. Panels (a) and (b) show HPM solutions as a function of the index N for different values of the fractional order α and the power q in model (49) . 

Panel (c) displays the fast convergence of HPM for the two cases. 

 

 

 

 

 

Suppose that the exact solution u ∗ is bounded: ‖ u ∗‖ 2 = M < ∞ . Then it follows that: 

| b n | ≤ 2 

∫ 1 

0 

| u 

∗(x ) || sin (nπx ) | d x = 2 

∫ 1 

0 

| u 

∗(x ) | d x (41)

≤ 2 ‖ 

u 

∗‖ 2 ‖ 

1 ‖ 2 = 2 ‖ 

u 

∗‖ 

= 2 M . (42)

The HPM solution is obtained in the way as described in Section 3 . First, we write the homotopy: {
u 

′′ + p(u − g(x )) = 0 , 

u (0) = u (1) = 0 . 
(43)

Then we select the equations for equal powers of p : 

p 0 : 

{
(v 0 ) ′′ = 0 , 

v 0 (0) = 0 , v 0 (1) = 0 ⇒ v 0 (x ) = 0 . 
(44)

p 1 : 

{
(v 1 ) ′′ + v 0 = h (x ) , 

v 1 (0) = 0 , v 1 (1) = 0 

⇒ v 1 (x ) = 

∞ ∑ 

n =1 

(
1 − 1 

n 

2 π2 

)
b n sin (nπx ) . (45)
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Fig. 2. HPM solutions for example 3 for α = 1 . 5 (upper two plots) and the error for N = 30 and α = 2 (lower plot). 
p 2 : 

{
(v 2 ) ′′ + v 1 = 0 , 

v 2 (0) = 0 , v 2 (1) = 0 

⇒ v 2 (x ) = 

∞ ∑ 

n =1 

(
1 

n 

2 π2 
− 1 

n 

4 π4 

)
b n sin (nπx ) . (46) 

p 3 : 

{
(v 3 ) ′′ + v 2 = 0 , 

v 3 (0) = 0 , v 3 (1) = 0 

⇒ v 3 (x ) = 

∞ ∑ 

n =1 

(
1 

n 

4 π4 
− 1 

n 

6 π6 

)
b n sin (nπx ) . (47) 

The HPM solution becomes: u (x ) = 

∑ ∞ 

k =1 v k (x ) = lim N→∞ 

V N (x ) 

= lim 

N→∞ 

∞ ∑ 

n =1 

(
1 − 1 

(nπ) 2 N 

)
b n sin (nπx ) . 
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Fig. 3. Numerical results for the Gelfand–Bratu model defined by Eq. (58) . In panel (c), we can see that the HPM solution is converging for λ = 4 and 

α = 2 . 

 

We can now easily find an estimate for the error as a function of N : 

e N (x ) := u 

∗(x ) − V N (x ) , 

= 

∞ ∑ 

n =1 

1 

(nπ) 2 N 
b n sin (nπx ) , 

which gives 

‖ 

e N ‖ 2 = 

∥∥∥∥∥
∞ ∑ 

n =1 

(
1 

(nπ) 2 N 

)
b n sin (nπx ) 

∥∥∥∥∥
2 

, 

≤
∞ ∑ 

n =1 

| b n | 
(nπ) 2 N 

, 

≤
∞ ∑ 

n =1 

2 M 

(nπ) 2 N 
, 

≤ 2 M 

π2 N 

∞ ∑ 

n =1 

1 

n 

2 

= 

M 

2 N−2 
. (48)
3 π
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Table 1 

Maximum HPM error for q = 10 and for q = 20 . 

N α = 1 . 1 α = 1 . 7 

1 0.08582180 0.074 9386 8 

2 0.00486217 0.008514 4 4 

3 0.00158691 0.0 0 089426 

4 0.0 0 013589 0.0 0 0 09150 

5 0.0 0 0 02649 0.0 0 0 0 0935 

N α = 1 . 1 α = 1 . 7 

1 0.10386288 0.08023764 

2 0.00696762 0.00930574 

3 0.00171177 0.0 0 098390 

4 0.0 0 017720 0.0 0 010 091 

5 0.0 0 0 02596 0.0 0 0 01031 

 

 

 

 

 

 

 

 

 

 

 

This example shows, at least for this specific example, ‘spectral’ convergence of the HPM approximations. In general, this is

not necessarily the case, of course. The HPM series solution can converge (slowly, fast) or even diverge, depending on the

situation. For this, we refer to [23,28,29] in which more general convergence results for HPM are discussed. 

5. Numerical examples 

In this section, we present numerical experiments to show the different aspects of HPM when applied to models of type

(1) . 

5.1. Example 2: a linear fractional BV-model with a source term 

First, we consider: {
D 

α
C u + u = x q + 

�(q +1) 
�(q −α+1) 

x q −α, q > α, 

u (0) = 0 , u (1) = 1 , 
(49) 

with the exact solution given by u (x ) = x q . We show the numerical HPM solutions for the cases q = 10 ( α = 1 . 1 and α = 1 . 7 )

and q = 20 ( α = 1 . 1 and α = 1 . 7 ) in Table 1 . This table shows the effects of α and q values on the HPM solution. We observe

that the lower α values and higher q values give higher maximum absolute errors. This example also demonstrates the fast

convergence of HPM for linear fractional differential equations. In Fig. 1 , we present the effect of different α values on the

HPM solution. It is clear that the quality of HPM approximation is directly related to the fractional order α and the power

q in the solution. 

5.2. Example 3: an explicit HPM-solution 

In this example, we study a linear fractional boundary-value model: {
D 

α
C u + 1 + u = 0 , 1 < α ≤ 2 , 

u (0) = 0 , u (1) = 1 . 
(50) 

For α = 2 the exact solution reads u (x ) = 

1 −cos (1) 
sin (1) 

sin (x ) + cos (x ) − 1 . The lower figure in Fig. 2 depicts the error for N = 30

of the HPM solution for α = 2 . The upper plots in Fig. 2 illustrate the HPM solution for N = 30 (left plot) and the difference

between two succeeding HPM solutions (right plot). 

For this model, we can derive an explicit formula for the series solution. Following the HPM steps in Section 3 , we

separate the fractional derivative part and then multiply the remaining part with the parameter p : 

D 

α
c u = −p(1 + u ) (51) 

Then we substitute assumption (10) into equation (51) : 

D 

α
c (v 0 + pv 1 + p 2 v 2 + p 3 v 3 + · · · ) = −p(1 + v 0 + pv 1 + p 2 v 2 + · · · ) . (52) 

Collecting the equations for increasing powers of the parameter p , i.e. for p 0 , p 1 , p 2 , p 3 , ...; we find: 

p 0 : D 

α
c v 0 = 0 ⇒ 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

v 0 (x ) − v ′ 0 (0) x = c 0 v ′ 0 (0) = β0 

v 0 (x ) = β0 x + c 0 

v 0 (0) = v 0 (1) = 0 ⇒ β0 = 0 , c 0 = 0 

v 0 (x ) = 0 . 

(53) 
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Fig. 4. Influence on the convergence of HPM depending on the parameters μ and A in model (58) . Panel (a) shows the HPM solution solutions for A = 1 

and λ = 1 , panel (b) shows for A = 20 and λ = 1 , panel (c) shows for A = 5 and λ = 2 and finally panel (d) shows the results for A = 1 and λ = 4 . 

 

 

p 1 : D 

α
c v 1 = −1 − v 0 ⇒ 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

v 1 (x ) − v ′ 1 (0) ︸ ︷︷ ︸ 
β1 

x = 

�(1) 
�(α+1) 

x α, 

v 1 (x ) = − �(1) 
�(α+1) 

x α + β1 x, 

v 1 (1) = 0 ⇒ β1 = 

�(1) 
�(α+1) 

. 

(54)

p 2 : D 

α
c v 2 = −v 1 = 

�(1) 

�(α + 1) 
x α − β1 x ⇒ 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

v 2 (x ) − v ′ 2 (0) ︸ ︷︷ ︸ 
β2 

x = J 

α
c 

[
�(1) 

�(α+1) 
x α − β1 x 

]
, 

v 2 (x ) = 

�(1) 
�(2 α+1) 

x 2 α − β1 
�(2) 

�(α+2) 
x α+1 + β2 x, 

v 2 (1) = 0 ⇒ β2 = 

�(1) 
�(2 α+1) 

− β1 
�(2) 

�(α+2) 
. 

(55)
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Fig. 5. Numerical results for the fractional Gelfand–Bratu model with damping (59) : HPM solutions for ε = 1 . 0 (a), ε = 0 . 5 (b), ε = 0 . 35 (c), and the error 

in the maximum norm as a function of the number of terms N in the approximation, respectively. 

 

p 3 : D 

α
c v 3 = −v 2 = − �(1) 

�(2 α + 1) 
x 2 α + β1 

�(2) 

�(α + 2) 
x α+1 − β2 x, 

⇒ 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

v 3 (x ) − v ′ 3 (0) ︸ ︷︷ ︸ 
β3 

x = J 

α
c 

[
− �(1) 

�(2 α+1) 
x 2 α + β1 

�(2) 
�(α+2) 

x α+1 − β2 x 
]
, 

v 3 (x ) = − �(1) 
�(3 α+1) 

x 3 α + β1 
�(2) 

�(α+2) 
�(α+2) 
�(2 α+2) 

x 2 α+1 − β2 
�(2) 

�(α+2) 
x α+1 + β3 , 

v 3 (1) = 0 ⇒ β3 = 

�(1) 
�(3 α+1) 

− β1 
�(2) 

�(α+2) 
�(α+2) 
�(2 α+2) 

+ β2 
�(2) 

�(α+2) 
. 

(56) 

With induction we can generate the formula: 

v n (x ) = (−1) n 
�(1) 

�(1 + nα) 
x nα + 

[ 

n −1 ∑ 

k =1 

( −1) k +1 βk 

( 

n −k ∏ 

i =1 

�( 2 + α(i − 1)) 

�( 2 + iα) 

) 

x α(n −k )+1 

] 

+ βn x, 

βn = (−1) n +1 �(1) 

�(1 + nα) 
+ 

[ 

n −1 ∑ 

k =1 

( −1) k βk 

( 

n −k ∏ 

i =1 

�(2 + α(i − 1)) 

�(2 + iα) 

) ] 

. (57) 

and finally we set u (x ) = u (x ; 1) = 

∑ ∞ 

n =1 v n (x ) . 

This generated formula could provide us with higher-order HPM solutions. However, from a practical point of view, the

use of formula (57) is not very efficient. Instead, it could serve for theoretical considerations. 
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Fig. 6. Two different solutions in the fractional Gelfand–Bratu model with damping (59) for ε = 0 . 35 : in panel (a) these are displayed as a function of x 

and in panel (b) in the phase plan ( u, du / dx ). These solutions were obtained by a shooting method and the existence is confirmed by analysis in [20] . Only 

the lower solution 1, shown in blue, can be detected by HPM. 

Table 2 

Errors in example 4 for A = 1 , μ = 1 and α = 2 . 

N Maximum error Ratio test 

1 0.09609375 0.384375 

2 0.01230238 0.128025 

3 0.00109586 0.089077 

4 0.0 0 0 02895 0.026416 

5 0.0 0 0 01244 0.429618 

6 0.0 0 0 0 0295 0.237384 

... ... ... 

10 1 . 51651970 . 10 −9 0.236744 

11 1 . 72137047 . 10 −10 0.113508 

12 4 . 6 836674 8 . 10 −13 0.001146 

Table 3 

Errors in example 4 for A = 5 , μ = 1 and α = 2 . 

N Maximum error Ratio test 

1 0.92317708 0.477083 

2 0.20311499 0.445347 

3 0.00370464 0.298901 

4 0.01602912 0.061214 

5 0.00548413 2.595368 

6 0.0 0 0 09242 0.753362 

... ... ... 

23 1 . 72124479 . 10 −10 0.077870 

24 1 . 64598188 . 10 −10 3.667836 

25 9 . 76579753 . 10 −11 0.894541 

 

 

 

 

5.3. Example 4: a fractional Gelfand–Bratu model 

The following example is the fractional Gelfand–Bratu model with parameter μ: {
D 

α
C u + μe u = 0 , μ > 0 , 1 < α ≤ 2 , 

u (0) = u (1) = 0 . 
(58)

In this model, we expand the nonlinear term e u into a Taylor series to apply the fractional integral formulas in Eqs. (15) –(19)

more efficiently. Note that for α = 2 , there may be zero, one or two solutions for this model, depending on the value of μ
[22] . We use here the initial HPM approximation u ( x ) = A x (1 − x ) with A ∈ R , which satisfies the boundary conditions. The

effect of changing μ and A values on the HPM solution is presented in Tables 2 –4 . These tables show us that for higher μ
and A values we need more steps to get a reasonable accuracy for α = 2 . We also included a ‘ratio test’ between differences
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Fig. 7. Panel (a) displays the convergence of HPM for the fractional Gelfand–Bratu model with damping (59) with ε = 1 for the case α = 1 . 6 as a function 

of N , panel (b) shows the dependence of the convergence rate on the fractional derivative α in the model, and panel (c) indicates the differences in solution 

behavior for three values of α for ε = 1 . 

 

 

 

 

 

 

 

 

 

 

of successive HPM approximations. These confirm clearly the convergence of HPM and its possible divergence in Table 4 . In

Table 5 , we consider the case with α = 1 . 5 for μ = 1 and A = 1 . If we compare the results in Tables 2 and 5 , we conclude

that HPM needs more steps for the fractional case than the ordinary case to reach a similar accuracy. The HPM solutions

for different values of α are also given in Fig. 3 . Fig. 3 (c) shows that HPM may converge to a non-existing solution, here for

the values λ = 4 and α = 2 . Fig. 3 (d) displays a bifurcation diagram for this model. It remains unclear what would happen

with the second solution for 1 < α < 2. In Fig. 4 the effect of changing the parameter A on the convergence in the initial

approximation of HPM is displayed. 

5.4. Example 5: a fractional Gelfand–Bratu model with damping 

Similar to the description in [20] , we consider the following nonlinear equation: {
εD 

α
C u + 2 u 

′ + 1 + u + 

1 
2 

u 

2 = 0 , 0 < ε ≤ 1 , 

u (0) = u (1) = 0 . 
(59) 

This example includes a damping term and a quadratic approximation to the exponential compared to the previous example.

Note that for α = 2 , there are two solutions for this model, but HPM can only produce one of them. Figs. 5 –7 show different

scenarios of the model. These are explained in the captions of the figures. The non-uniqueness of the solution is displayed

for ε = 0 . 35 and α = 2 : Fig. 6 (a) and (b) were produced using a shooting method with Matlab. The right plot shows the two
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Fig. 8. Panel (a) shows the convergence of HPM depending on the parameter ε in the fractional boundary layer model (60) . Panel (b)-(d) show convergent 

and divergent solutions according to the value of ε. 

 

 

 

curves (in red and blue) in the phase plane ( u, du / dx ). It can also be clearly observed that the performance of HPM is very

sensitive to the choice of the parameter ε in the model. Smaller values of ε slow down the convergence rate of the method

dramatically (see Fig. 5 (d)). 

5.5. Example 6: a fractional boundary layer model 

Our next example is a fractional boundary layer model: 

εD 

α
C u + γ u 

′ = 0 , 0 < ε ≤ 1 , γ > 0 , 

u (0) = 0 , u (1) = 1 . (60)
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Fig. 9. The effect of varying the fractional order in the fractional boundary layer model (60) is depicted for a fixed value of ε = 0 . 45 . The right plot shows 

the fast convergence of HPM for α = 1 . 5 The left plot displays the difference in solution behavior between the non-fractional α = 2 and fractional α = 1 . 5 

case. 

Table 4 

Errors in example 4 for A = 5 , μ = 5 and α = 2 . 

N Maximum error Ratio test 

1 0.38411458 0.307292 

2 0.39087528 1.017601 

3 0.44169314 1.130010 

4 0.52929314 1.198328 

5 0.66284 94 9 1.252330 

6 0.85925246 1.296301 

... ... ... 

23 500.269910 1.519908 

24 762.342906 1.523863 

25 1164.49295 1.527519 

 

 

 

 

 

 

 

 

 

For α = 2 and γ = −1 , it has an exact solution: 

u (x ) = 

e 
x 
ε − 1 

e 
1 
ε − 1 

. (61) 

In Fig. 8 , we present the effect of ε on the convergence of the HPM method for α = 2 . It can be clearly seen that it depends

on the small parameter ε: for smaller values of ε it converges slower or even diverges. This can be seen in Fig. 8 (a) where

we display the dependence of the value N (denoted by N 

∗) to obtain a similar accuracy equal to 0.01. Fig. 9 shows HPM

solutions for the fractional cases α = 1 . 7 and α = 1 . 5 with ε = 1 . 0 . Lower values of α tend to make the solution steeper for

a fixed ε, but also let HPM converge slower. 

6. Summary 

In this paper we analyzed the Homotopy perturbation method (HPM) for fractional advection-dfiffusion-reaction equa- 

tions. We showed the equivalence between HPM and ADM. A general expression for the coefficients in the series was derived

in the case of a nonlinear source term. We applied HPM to a test set of models, both linear and nonlinear. Numerical ex-

periments demonstrated the capability of HPM to find solutions up to high accuracy. However, in some cases the method

converged slowly or even diverged. In the situation of non-existing or multiple solutions, HPM may converge to a non-

existing one or has difficulties to find the second solution. Finally, the performance of HPM highly depends on the model

parameters in the advection-diffusion-reaction equation. 



I. Ate ̧s , P.A. Zegeling / Applied Mathematical Modelling 47 (2017) 425–441 441 

Table 5 

Errors in example 4 for A = 1 , μ = 1 and α = 

1 . 5 . 

N Maximum Error Ratio Test 

1 0.02809378 0.133318 

2 0.00582333 0.214116 

3 0.00136224 0.241065 

4 0.0 0 034055 1.627578 

5 0.0 0 0 08814 1.220158 

6 0.0 0 0 02348 0.737494 

7 0.0 0 0 0 0632 0.649958 

8 0.0 0 0 0 0171 0.654176 

9 4 . 62559720 . 10 −7 0.744348 

10 1 . 25587544 . 10 −7 1.113443 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acknowledgments 

I. Ate ̧s gratefully acknowledges financial support from The Republic of Turkey Ministry of National Education. 

References 

[1] J.-H. He , Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng. 178 (3–4) (1999) 257–262 . 
[2] J.-H. He , Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput. 135 (1) (2003) 73–79 . 

[3] J.-H. He , Homotopy perturbation method for solving boundary value problems, Phys. Lett. A 350 (1–2) (2006) 87–88 . 
[4] J.H. He , New interpretation of homotopy perturbation method, Appl. Math. Comput. 20 (18) (2006) 2561–2568 . 

[5] H. Jafari , V. Daftardar-Gejji , Positive solutions of nonlinear fractional boundary value problems using adomian decomposition method, Appl. Math.
Comput. 180 (2006) 700–706 . 

[6] S. Momani , Z. Odibat , Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial dif-
ferential equations, Comput. Math. Appl. 54 (7–8) (2007) 910–919 . 

[7] K. Parand , J.A. Rad , Exp-function method for some nonlinear PDE‘s and a nonlinear ODE‘s, J. King Saud Univ. - Sci. 24 (1) (2012) 1–10 . 

[8] S. Liao , Beyond Perturbation: Introduction to the Homotopy Analysis Method, CRC Press LLC, 2004 . 
[9] S. Liao , Homotopy Analysis Method in Nonlinear Differential Equations, Higher Education Press, 2012 . 

[10] X.J. Yang , H.M. Srivastava , C. Cattani , Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathe-
matical physics, Romanian Rep. Phys. 67 (3) (2015) 752–761 . 

[11] Y. Zhang , C. Cattani , X.J. Yang , Local fractional homotopy perturbation method for solving non-homogeneous heat conduction equations in fractal
domains, Entropy 17 (2015) 6753–6764 . 

[12] M. Sheikholeslami , H.R. Ashorynejad , D.D. Ganji , A. Kolahdooz , Investigation of rotating MHD viscous flow and heat transfer between stretching and

porous surfaces using analytical method, Math. Problems Eng. 2011 (2011) 17 . 
[13] M. Sheikholeslami , D.D. Ganji , Heat transfer of cu-water nanofluid flow between parallel plates, Powder Technol. 235 (2013) 873–879 . 

[14] I. Podlubny , Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solu-
tion and Some of Their Applications, Academic Press, San Diego-Boston-New York-London-Tokyo-Toronto, 1999 . 

[15] S.G. Samko , A .A . Kilbas , O.I. Marichev , Fractional Integrals and Derivatives: Theory and Applications, 1st edition, CRC Press, 1993 . 
[16] K.B. Oldham , J. Spainer , The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Dover Books on Math-

ematics, 1974 . 

[17] X.J. Yang , Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, 2004 . 
[18] G. Jumarie , Modified riemann-liouville derivative and fractional taylor series of nondifferentiable functions further results, Comput. Math. Appl. 51

(9–10) (2006) 1367–1376 . 
[19] J.-H. He , A tutorial review on fractal spacetime and fractional calculus, Int. J. Theor. Phys. 53 (11) (2014) 3698–3718 . 

[20] T. Bakri , Y.A. Kuznetsov , F. Verhulst , E. Doedel , Multiple solutions of a generalized singular perturbed bratu problem, Int. J. Bifurc. Chaos V22 (N4)
(2012) . 

[21] S.A. Khuri , A new approach to Bratu’s problem, Appl. Math. Comput. 147 (2004) 131–136 . 

[22] M.I. Syam , A. Hamdan , An efficient method for solving Bratu equations, Appl. Math. Comput. 176 (2) (2006) 704–713 . 
[23] M. Turkyilmazoglu , Convergence of the homotopy perturbation method, Int. J. Nonlinear Sci. Numer. Simul. V12 (2011) 9–14 . 

[24] V.G. Kac , A.K. Raina , Bombay lectures on highest weight representations of infinite dimensional lie algebras, Advanced Series in Mathematical Physics,
2nd edition, Word Scientific, 1987 . 

[25] A. Wazwaz , Adomian decomposition method for a reliable treatment of the bratu-type equations, Int. J. Modern Phys. B 166 (2005) 652–663 . 
[26] E. Babolian , A.R. Vahidi , Z. Azimzadeh , A comparison between the homotopy perturbation method and Adomian’s decomposition method for solving

nonlinear volterra integral equations, J. Sci. Tarbiat Univ. V11 (2) (2012) . 

[27] G. Adomian , A review of the decomposition method in applied mathematics, J. Math. Anal. Appl. 135 (1998) 501–544 . 
[28] J. Biazar , G. Ghazvini , Convergence of the homotopy perturbation method for partial differential equations, Nonlinear Anal.: Real World Appl. 10 (5)

(2009) 2633–2640 . 
[29] J. Biazar , H. Ghazvini , Convergence of the homotopy perturbation method for partial differential equations, Nonlinear Anal.: Real World Appl. 10 (5)

(2009) 2633–2640 . 

http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0001
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0001
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0002
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0002
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0003
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0003
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0029
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0029
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0004
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0004
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0004
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0005
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0005
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0005
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0006
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0006
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0006
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0007
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0007
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0008
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0008
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0009
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0009
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0009
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0009
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0010
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0010
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0010
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0010
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0011
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0011
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0011
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0011
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0011
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0012
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0012
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0012
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0013
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0013
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0014
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0014
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0014
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0014
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0015
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0015
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0015
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0016
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0016
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0017
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0017
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0018
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0018
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0019
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0019
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0019
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0019
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0019
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0020
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0020
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0021
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0021
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0021
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0022
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0022
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0023
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0023
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0023
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0024
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0024
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0025
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0025
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0025
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0025
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0027
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0027
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0026
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0026
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0026
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0028
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0028
http://refhub.elsevier.com/S0307-904X(17)30155-5/sbref0028

	A homotopy perturbation method for fractional-order advection-diffusion-reaction boundary-value problems
	1 Introduction
	2 A fractional-order advection-diffusion-reaction model
	3 The homotopy perturbation method (HPM)
	4 Theoretical results
	4.1 A comparison between HPM and the Adomian decomposition method
	4.2 Convergence of HPM

	5 Numerical examples
	5.1 Example 2: a linear fractional BV-model with a source term
	5.2 Example 3: an explicit HPM-solution
	5.3 Example 4: a fractional Gelfand-Bratu model
	5.4 Example 5: a fractional Gelfand-Bratu model with damping
	5.5 Example 6: a fractional boundary layer model

	6 Summary
	 Acknowledgments
	 References


