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Abstract

An adaptive grid technique for use in the solution of multi-dimensional
time-dependent PDEs is applied to several magnetohydrodynamic model
problems. The technique employs the method-of-lines and can be viewed
both in a continuous and semi-discrete setting. By using an equidis-
tribution principle, it has the ability to track individual features of the
physical solutions in the developing plasma flows. Moreover, it can
be shown that the underlying grid varies smoothly in time and space.
The results of several numerical experiments are presented which cover
many aspects typifying nonlinear magneto-fluid dynamics.

1 Introduction

Many interesting phenomena in plasma fluid dynamics can be described
within the framework of magneto-hydrodynamics (MHD). Numerical studies
in plasma flows frequently involve simulations with highly varying spatial
and temporal scales. As a consequence, numerical methods on uniform grids



may be inefficient to use, since a very large number of grid points is needed to
resolve the spatial structures, such as shocks, contact discontinuities, shear
layers, or current sheets. For the efficient study of these phenomena, we re-
quire adaptive grid methods which automatically track and spatially resolve
one or more of these structures.

Over the years a large number of adaptive grid methods have been pro-
posed for time-dependent PDE models. Two main strategies of adaptive
grid methods can be distinguished, namely, static-regridding methods and
moving-grid or dynamic-regridding methods. In static-regridding methods
(denoted by h-refinement) the location of nodes is fixed. A method of this
type adapts the grid by adding nodes where they are necessary and removing
them when they are no longer needed. The refinement or de-refinement is
controlled by error estimates or error monitor values (which have no resem-
blance with the true numerical error). Recent examples of these methods
are described in [16], [4], [20], [7]. In dynamic-regridding methods (denoted
by r-refinement) nodes are moving continuously in the space-time domain,
like in classical Lagrangian methods, and the discretization of the PDE is
coupled with the motion of the grid. Examples can be found in [3], [18], [19],
[5], [8]-

In this paper we follow the second approach. The adaptive grid method is
based on a semi-discretization of a fourth-order PDE for the grid variable and
is being coupled to the original MHD model re-written in a new co-ordinate
system. We use the so-called Method-Of-Lines-technique (MOL) [11]: first
we discretize the PDEs in the space direction using a finite-difference approx-
imation, so as to convert the PDE problem into a system of stiff, ordinary
differential equations (ODEs) with time as independent variable. The dis-
cretization in time of this stiff ODE system then yields the required fully
discretized scheme.

The layout of the paper is as follows. In the next section we present
the full set of MHD equations and their physical meaning. In section 3 we
describe the restriction to the one-dimensional situation and the adaptive
grid method. The moving grid is defined as the solution of an adaptive
grid PDE. Numerical experiments are shown for three different cases: an
MHD-shocktube model, a problem describing Shear-Alfvén wave propaga-
tion, and an oscillating plasma sheet in vacuum surroundings. Section 4
discusses the essential elements for generalizing the MOL approach to multi-
dimensional MHD simulations. We evaluate different means for 2D grid
adaptation on kinematic magnetic field models, with particular attention



paid to the solenoidal condition on the magnetic field vector. Section 5 lists
our conclusions and presents an outlook to future work.

2 The equations of magnetohydrodynamics

The MHD equations govern the dynamics of a charge-neutral ‘plasma’. Just
like the conservative Euler equations provide a continuum description for a
compressible gas, the MHD equations express the basic physical conservation
laws to which a plasma must obey. Because plasma dynamics is influenced by
magnetic fields through the Lorentz-force, the needed additions in going from
hydrodynamic to magneto-hydrodynamic behaviour is a vector equation for
the magnetic field evolution and extra terms in the Euler system that quantify
the magnetic force and energy density.

Using the conservative variables density p, momentum density m = pv
(with velocity v), magnetic field B, and total energy density e, the ideal
MHD equations can be written as follows (cfr. [2], [13], [15]):

Conservation of mass:

dp
el . = 0. 1
LV (pv) =0 (1
Conservation of momentum:
0
(gtv) + V- (pvv—BB) + Vp,,; = 0. (2)
Conservation of energy:
de )
5 TV (V4 Vp —BB-v) =0 [+ en(V x B). (3)

Magnetic field induction equation:

aa_? +V-(VB-Bv)=0 [+ c,AB] (4)

In (2) and (3) the total pressure py, consists of both a thermal and a magnetic
contribution as given by

]32 V2 B2
Pior = P+ =0 where P:(’y—l)(e—p7—7) (5)



is the thermal pressure. This set of equations must be solved in conjunc-
tion with an important condition on the magnetic field B, namely the non-
existence of magnetic ‘charge’” or monopoles. Mathematically, 1t is easily
demonstrated that this property can be imposed as an initial condition alone,
since

VB|7§=0:0$VB|7§20:0 (6)

In multi-dimensional numerical MHD, the combined spatio-temporal dis-
cretization may not always ensure this conservation of the solenoidal charac-
ter of the vector magnetic field. When dealing with a two-dimensional model
problem for B-evolution in section 4.2.6, we pay particular attention to this
matter.

The terms between brackets in equations (3) and (4) extend the ideal
MHD model with the effects of Ohmic heating due to the presence of cur-
rents. With the resistivity ¢,, # 0, we then solve the resistive MHD equations.
Likewise, extra non-conservative source terms may be added to the momen-
tum and energy equation for describing viscous effects. In the numerical
experiments, we resort to artificial diffusive terms which can be thought of
as approximations representing these actual physical phenomena.

3 Adaptive grid simulations for 1D MHD

3.1 The MHD equations in 1D

If we restrict the MHD model (1)-(6) to 1.5D, i.e. variations in one spatial x-
dimension but possibly non-vanishing y-components for the vector quantities
with 0/0y = 0, we obtain a 5-component PDE system which is formally
written as

0¥  JOF(W¥)

St g =0 wcleneal, t>0. (7)

Here, @ = (p, m1, ma, By, €)7 is the vector of conserved variables (m1, my are

now the z- and y-components of the momentum vector and By denotes the y-

component of the magnetic induction), with the flux-vector F = (Fh, ..., F5)T
given by
F1 = mq,
2 2 2 P2 2
o my 2 my +m; Bi + B;
B o= 7—31 +(7—1)6—(7—1)T+(2— )T’
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The constant v is the ratio of specific heats and By is the constant first
component of the magnetic induction vector. Indeed, in 1D model problems,
the vanishing divergence of the magnetic field is thereby trivially satisfied.
The remaining set of 5 PDEs given by (7) constitutes the physical model
used for the 1D MHD simulations found below. We first indicate how this
system is further manipulated and discretized to solve simultaneously for the
adaptive grid with its corresponding solution.

3.2 The adaptive grid method in one space dimension
3.2.1 Transformation of variables

It is common practice in adaptive grid generation to submit the PDE model
to a coordinate transformation. Ideally, the mapping should be chosen such
that in the new coordinate variables the discretization error in the numerical
solution is much smaller than in the original variables. In the new variables
the PDEs are then simply uniformly partitioned. In general, applying a
transformation

to the system (7) gives after some elementary calculations
.Ig‘I’g — ‘P‘ELC& + (F(‘I’))g =0. (9)

Different choices for the transformation are possible. The coordinate trans-
formation used in this paper is implicitly defined as the solution of a special
partial differential equation (see sect. 3.2.2). Even without knowing this
mapping, we can already semi-discretize (9) by noting that in the &-variable
a uniform grid (¢ = i/N, ¢ = 0,...,N) is imposed. Using central finite-
differences, the PDEs (9) become a system of ODEs as follows:
dw, da; .

(:L'H_l — l'i_l)W — (‘Pi-l-l — ‘PZ'_1> a0 + F(‘Pz+1> — F(q’z_1> =0 \V/'l. (10)
Note that we have multiplied (10) by the factor 2A¢, which has a constant
value by definition.




3.2.2 The adaptive grid PDE

We implicitly define the transformation £(z,t), and thereby the grid distri-
bution, as the solution of the following time-dependent ‘adaptive grid PDE’

[(S(z¢) + Taee) W], = 0. (11)

The parameter 7 > 0in (11) is a temporal smoothing parameter, the operator
S incorporates a spatial smoothing in a manner detailed below, while

5 .
W = \l 143 a; (@)

i=1

is a weight function that depends on the derivatives of the different compo-
nents WU, The parameters a; are termed ‘adaptivity parameters’. Their
values can be chosen to emphasize, if necessary, particular variables in the
PDE model (such as the density or a magnetic field component for MHD
problems). In full, the smoothing operator S in (11) is defined by

2 0

S=TI-o(c+1)(Af) T’

(12)
where o > 0 is a spatial smoothing parameter and Z the identity operator.
This specific choice of transformation has several desirable properties, which
are briefly discussed in sect. 3.2.3.

Since the adaptive grid PDE is fourth order in space, it is clear that we
need four boundary conditions and one initial condition. An obvious choice
is to take two Dirichlet and two Neumann conditions:

Tle=o = a1, T|e=1 = TR, Te|e=o = T¢[e=1 = 0. (13)
At initial time 6§ = 0, the grid is uniformly distributed and is thus given by
tlo=0 = x1, + (zr — z1)¢.
3.2.3 Properties of the adaptive grid

It can be shown that the determinant of the Jacobian of the transformation
implied by (11)—-(12) satisfies the mesh-consistency condition

J = Te > 0 Ve [OaT]v \Vlf € [071]7 (14)



which in discretized form reads (since A is a constant)
Az;(0) = 2;(0) —z,-1(0) >0 VO €0,T]. (15)

In other words, relation (15) states that the grid points can never cross one
another (see chapter 4 in [18] and [5] for more details and proofs of these
results). Another important property of the transformation satisfying (11)-

(12) is the following:

e (16)
Te oo+ 1)A¢
which may be translated in discrete terms as
1 A$2+1(0> 1 .
<1+ — 0> . 1
T4+1 7 Ax() — T, o vezo W (17)

This property expresses ‘local quasi-uniformity’ and means that the variation
in successive grid cells can be controlled by the parameter o at every point
in time.

A reasonable choice for the temporal smoothing parameter is 0 < 7 <
1072 x {timescale in PDE model}, while the spatial smoothing parameter
is typically ¢ = O(1). The adaptivity parameters are normally taken o; =
O(1) (see also [18]), but may need re-scaling depending on the z-range and
the magnitude of the individual ). Note that, if we switch off all smoothing
in (11), we obtain the well-known ‘equidistribution principle’ which has both
a continuous and discrete variant given by the formulae

fo W dz

T=0=0 = [:L'gW]gZO V@E[O,T] = f(xat):mv (18)

or in discretized form (using the midpoint rule for integration)

Azi- Wiy = constant V0 € [0,T]. (19)

3.2.4 Semi-discretization of the adaptive grid PDE

The adaptive grid PDE (11) is semi-discretized using central-differences to
obtain

dA.fH_l
dé

Witz — [Axi + TW]Wi—l/Q =0 Vi, (20)

[A%’-H + 7

7



where

Az; = Ax; — oo+ 1)(Aziy1 — 2Az; + Aziyq), (21)
which is a discretization of S(z¢) about the gridpoint ¢ = ﬁ
The discrete version of the weight function becomes
Wisij2 = \ll +3 0y (B2 with @Y = — (2
i=1 i

The grid equations (20)—(21) are related to the adaptive grid described in
[3]. The differences between (20)—(21) and [3] mainly consist of the use of
cell-lengths instead of point concentrations and not applying the operator &

to the ddA;—terms. In compact notation the adaptive grid ODE system (20)
reads

dX
T B(X,¥,0, a)@ =H(X,¥,0,a), (23)
where
T
a=(a,az,.,05),

and ¥ and X contain the discretized MHD components and the grid points,
respectively. After coupling this system to the semi-discretized PDE system
(10), a large, stiff, banded, nonlinear ODE system is obtained. System (23)
has bandwidth 12. This can be easily derived by working out (20) in terms of
the x;’s and realizin% that the unknown vector of the complete ODE system
is written as (..., \IJZ(-I ,\I/Z(-Q), - \I/Z(-S), T4, \I/Z(-_ll_)l, ...)L. For the time-integration of
this system, the ODE-package DASSL [10] with the (implicit) BDF-methods
up to order 5 will be used. DASSL uses a direct solver for the linear systems
and exploits the banded form of the equations in the Jacobian formation and
numerical linear algebra computations. Numerical differencing for Jacobians
in the Newton-process is being used. The time-stepping error tolerance is
denoted by tol and will be specified at the experiments.

3.3 Numerical results

In what follows, we apply the adaptive method of lines approach to three
1.5D MHD model problems which are chosen to cover significantly diverse
challenges typically encountered in numerical MHD simulations. We solve
a standard Riemann problem to address the performance of the MOL tech-
nique as a shock-capturing and shock-tracing method, we simulate linear



shear Alfvén waves which are non-compressive perturbations with a specific
polarization, and we model a plasma-‘vacuum’ configuration which poses
numerical difficulties to keep density and pressure positive throughout the
domain. We explicitly compare the obtained adaptive grid solutions with
high resolution reference solutions on static, uniform grids. These reference
solutions are all calculated with the Versatile Advection Code [14] (VAC, see
http://www.phys.uu.nl/~toth), and if not stated otherwise, use 1000 grid
points and the (approximate) Riemann-solver based Total Variation Dimin-
ishing (TVD) scheme with ‘minmod’ limiting. This shock-capturing, one-step
TVD scheme is actually one out of six high resolution spatial discretization
schemes available in VAC, and has demonstrated to be the most accurate
and efficient discretization method on a large variety of HD and MHD prob-
lems [13]. Specifically, the effects of dispersion and diffusion will essentially
be minimal in the reference solutions, and this should be kept in mind when
comparing them with the adaptive simulation results. For the latter, all ex-
periments used values for the smoothing parameters 7 = 107°, ¢ = 2, and
tol = 107%. The adaptivity constants will be specified and motivated per
model.

3.3.1 MHD-shocktube model

This test problem by [2] and also used in [13] has evolved into a benchmark for
MHD codes. The initial Riemann problem separates a high density and high
thermal pressure left state from a low density and low pressure right state
with the magnetic field lines reflected over the normal to the discontinuity
line x = 0.5 in the z — y plane. The sudden expansion of the left state
produces a reversedly propagating fast rarefaction fan and a slow compound
wave, a rightwardly advected contact discontinuity, and a right-moving slow
shock and fast rarefaction fan. The compound wave is a combination of a
slow shock with a slow rarefaction attached to it.

Specifically, the problem is set up in the space-interval z € [0, 1], while
we simulate for times ¢ € [0,0.1]. In the adaptive approach, we use 250 grid

points, and added artificial diffusion terms 6%7% %a‘gé])] to all but the mass-

conservation law with diffusion coefficients € = 0.0001. Since all developing

dynamic features have an associated density variation, we set the adaptiv-
ity parameter oy = 1, while all other parameters a; = 0, (i = 2,...,5).
Furthermore,

y=2, B =075
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Figure 1: Density at ¢ = 0.1 for the magnetic shocktube model. We compare
two static grid reference solutions, one with 250 grid points (dots) and one
for 1000 grid points (dashed), with an adaptive MOL solution exploiting 250
points (solid).

o = 1 for z € [0,0.5]
Pli=o 0.125 for z € [0.5, 1]

m1|t:0 = m2|t:0 =0

B [ for x € [0,0.5]
=071 _1 forze [0.5,1]

o = 1.78125 for = € [0,0.5]
Cli=0 0.88125 for z € [0.5,1]

Homogeneous Neumann boundary conditions are used for all components.
In Fig. 1, we compare the density profile at ¢ = 0.1 from three simulations:
a VAC solution on a 250 point static grid, the adaptive solution with the
same amount of grid points, and the true reference VAC solution exploiting
1000 points (both VAC solutions used a Courant number of 0.8). Clearly, the
MOL technique is superior to the VAC solution that uses the same amount of
grid points, and the accuracy of the adaptive method is identical to the high
resolution reference solution. We thus save a factor of 4 in grid resolution
as compared to a uniform grid. In Fig. 2, we plot at left the v, := m,/p
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Figure 2: Left panel: v; component of the velocity ¢ = 0.1 for both the
reference (dashed) and the MOL solution (solid). Right panel: grid history
(tracing a-positions of grid points as a function of time t) for the magnetic
shocktube model.

velocity profile at the same time for both the adaptive and the reference
solution, while the grid history for ¢ € [0,0.1] is shown at right. Note that
the adaptive solution is fairly dispersive for this particular variable. The
grid history demonstrates how the initial discontinuity causes an immediate
clustering of grid points in the region of interest and that the emerging shock
features are nicely traced individually.

3.3.2 Shear-Alfvén waves

This test problem was described by [12] and also used in [13] for their
evaluation of different discretization schemes. A homogeneous, uniformly
magnetized plasma state is perturbed with a localized velocity pulse trans-
verse (vg := my/p # 0) to the horizontal (z-direction) magnetic field. This
evolves into two oppositely traveling Alfvén waves that only have associated
vy 1= my/p and B, perturbations. The complete problem setup is as follows.

We take = € [0,3] and time-interval ¢ € [0,0.8], together with artificial
diffusion coeflicients (except for the mass-conservation law) ¢ = 0.0001. Be-
cause we only expect transverse vector components, we set the adaptivity

11
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Figure 3: Left panel: y-component of magnetic induction for the Shear-
Alfvén problem at ¢ = 0.8, again from a 1000 point reference solution
(dashed) with a 250 MOL solution. Right panel: grid history for the adaptive

simulation.

parameters a3 = ay = le 4+ 8 with all other a; = a3 = a5 = 0. The high val-
ues for a3 and a4 are a consequence of a scaling effect in the weight function.

Since (%)2 = O(107®) occurs in W, it is natural to choose the adaptiv-

ity parameter(s) O(10%) to balance the different terms. The number of grid
points for this model is taken equal to 250. Physical parameters and initial
conditions for this model are:

y=14, B =1

pli=o =1

m1|t:0 =0

{ 107 for z € [1,2]
m2|t:0 =

0 elsewhere
B2|t=0 - 0

o = 0.5000005025 for z € [1,2]
“It=0=3 0.5000000025 elsewhere

12
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Figure 4: Comparison of the errors in the density profile for the reference
MOL approach (left) and the TVD result (right). Note the different scales

on the p-axes.

Homogeneous Neumann boundary conditions hold for all components.

Figure 3 shows the B, component of the magnetic induction at ¢t = 0.8
from both the MOL and the reference solution. In the right panel, the grid
history is shown. The solution again compares favorably to the high reso-
lution static grid simulation, only slightly worsened by dispersion. The grid
history shows how the original single pulse separates into two oppositely trav-
eling signals. In Fig. 4, we compare the errors present for both the reference
solution and the adaptive one: ideally the density should remain constant.
Noting the large difference in scales, the MOL approach succeeds better in
minimizing the density variations. In fact, we used a Courant number of 0.4
for the reference solution in order to suppress these errors somewhat. For the
reference result, they are due to the small thermal pressure (p = 107?) which
creates roundoff problems within the Riemann solver used (see also [13]). In-
deed, when switching to the non-Riemann solver based TVD Lax-Friedrichs
discretization in VAC, these errors essentially disappear. Although the MOL
solution seems better judged from the controlled density variations, it fails
to maintain the positivity of the thermal pressure for this example.
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3.3.3 Oscillating plasma sheet

This test model was introduced recently in [15] as a typical case where an
implicit time integration strategy is more efficient than explicit methods.
A sheet of high density and pressure is surrounded by a magnetized ‘vac-
uum’. The vacuum is modeled as a low density, low pressure plasma so
that the plasma-vacuum interface is prone to introduce non-physical nega-
tive density and/or pressure fluctuations. We set up an initial total pressure
imbalance across the sheet by prescribing a uniform, sheet-aligned magnetic
field of different magnitude in the left and right vacuum region. With ideally
conducting wall boundary conditions at some distance away from the sheet
boundaries, this results in a magnetically controlled oscillation of the sheet
as a whole due to alternate compressions and rarefactions of the vacuum
magnetic fields on either side.

12r

0.8

0.4

0.2

Figure 5: Density at ¢ = 2 and grid history until that time for the oscillating
plasma sheet. In the left panel, the MOL solution (solid) is again compared
with a 1000 grid point reference solution.

Specifically, for z € [0,1], time ¢ € [0,2], we now use artificial diffusion
coefficients ¢ = 0.001 for momentum, energy and magnetic field, while it
was even necessary for stability reasons to introduce an artifical diffusion
term in the mass-conservation law with ¢ = 107°. We took as adaptivity
parameters a; = 1 (1 = 1,...,5) since there is no particular component which

14



should be emphasized (we could perhaps take az = 0 since there will be no
v9 motion induced aligned with the sheet). The MOL solution employed 350
grid points. In summary

y=14, B =0

107* for z € [0,0.45]
plizo =14 1 for z € [0.45,0.55]
1073 for z € [0.55, 1]

m1|t:0 = m2|t:0 =0

1.1 for z € [0,0.45]
B2|t:0 = 0.6 for z € [045, 055]
1.0 for = € [0.55,1]

0.60525 for = € [0,0.45]
€li=o = 0.98025 for z € [0.45,0.55]
0.50025 for = € [0.55,1]

Homogeneous Neumann BCs for all components, except for momentum in
the z-direction for which m|sq = 0.

In Fig. 5 the density at time ¢ = 2, and the grid history until that time is
shown. The density panel compares again the adaptive solution with a refer-
ence result (with Courant number 0.8), and it can be seen that the solution
is somewhat influenced by the higher (artificial) diffusion imposed. From
the grid history, we conclude that the timeframe shown is a little over two
‘periods’ of the induced oscillation, which is in agreement with the estimated
period 0.97 as listed in [15]. Note how the MOL technique nicely succeeds
in tracing the waving motion of the sheet boundaries. In contrast with the
previous example, the adaptive method is able to maintain the positivity of
the thermal pressure for this case.

4 Towards 2D MHD modeling

4.1 2D magnetic field evolution

In contrast to the 1D MHD case from above, multi-dimensional MHD simu-
lations face a non-trivial task when advancing a magnetic field configuration

15



forward in time while ensuring the property V- B = 0. The core problem is
represented by the induction equation (4), alternatively written as

88_]? =V x(vxB)+e¢,AB (24)

with €, the resistivity ¢, > 0. In two space dimensions, setting B =

(B1, Bz,0), we obtain the following system of PDEs,

0B, dB; 0B, Ov du,

I AB o 22, 2 g, g o2 9
at € 1 + V1 ay (%) ay + 2 ay 1 ay ) ( 5)
aBQ aBQ 831 81}1 81)2

002 _  AB,— PR ST ey 2
TR PR PR PR (26)

together with the property V-B = 0. This system will be solved using a 2D
adaptive grid method in section 4.2.6, with particular attention paid to the
solenoidal condition.

One way to ensure a divergence-free magnetic field at all times is to make
use of a vector potential formulation where B :=V x A. In two dimensional
applications, the system (25)-(26) is then equivalent to the single PDE for
the scalar As component

A
% = —v-VA;+ 6, A A, (27)
with % = B, —% = By, while A = (0,0, A3). We will use this sim-

pler model in section 4.2.4 to compare different means for generating a 2D
adaptive grid. Note that magnetic field lines are isolines of this A3 potential.

Finally, we point out (cfr. [17]) that the partial problem posed by the
system (25)-(26), or equivalently the PDE (27), can be relevant as a physical
solution to the special case where we consider incompressible flow V - v = 0,
the momentum equation (2) under the condition that the magnetic energy
B?/2 is much smaller than the kinetic energy pv?/2, and the induction equa-
tion itself. In those circumstances, the momentum balance decouples from
the magnetic field evolution. In the model problems studied, we therefore
impose an incompressible flow field v(z,y).

4.2 Adaptive grids in two space dimensions

4.2.1 Transformation in 2D

As in the 1D-case we first make use of a transformation of variables

£ =Ez,y,1), n=nlz,yt), 0=1, (28)

16



that yields for the equation (27) (a similar derivation can be made for the

(B1, By) system)

T Asg + Ase(yyo — woyy) + Aspn(Toye — 2eys)
= A37£(_’U1y77 + 'UQ-'L'n) + AS,n('Ulyg — ’U2.’L‘£)

z? + y2 TeTy + Yey
+em |( ”j LAz e)e — (7nj T Az )
rety + yey x§ + yi
_( nj nA,)n+( gj £A3m)n : (29)

Here, J = x¢y, — ,ye 1s the determinant of the Jacobian of the transfor-
mation. In general, we then allow for truly two-dimensionally deforming
grids.

If we restrict the grid adaptation in a 1.5D manner, i.e. when we impose
the extra restriction z, = ye = 0, we get J = z¢y,, and equation (29)
simplifies to

TeYnAs — Aseynre — Aspaeys = —v1ypAze — vareAsy,
ynA'd,& x§A3ﬂ7
+ em (T;g Je + (=) - (30)
n

This dimensionally split approach for the grid adaptation will be compared
with fully 2D deformations for the model problem from section 4.2.4.

4.2.2 Adaptive grid PDEs in 2D

Due to the 2D-transformation, now two fourth-order PDEs are needed to
define the grid and thereby the transformation. As an immediate extension
of the 1D-case (11) we set

[(Si(xe) + Taee) W], =0, (31)

[(S2(yn) + Tyna)Wel, = 0,

with §; and S, direction-specific versions of the operator S defined in (12).
The weight functions in (31) are now

Wi =y/1+a A3, Wry=\/14+a A, (32)

17



for a fully 2D adaptive grid, while in the 1.5D case, we set

W, = \/1 + a maxy A3, W, = \/1 + « max, A3, (33)

It can be shown (using 1D arguments in two directions), that with the latter
choice

T =aey, >0, V0>0, (34)

so that this restricted grid adaptivity maintains the desirable property that
grid cells do not fold over. For the more general case (32), no guarantee
can be given that grid points will not collide! This could be called the
‘battle between adaptivity and regularity’. The method parameters 7, o, o
are chosen in a similar way as before and are specified per problem in the
following sections. After semi-discretization of (30) and (31) we end up with
a banded ODE-system with bandwidth = 6 * npts 4+ 2, where npts x npts
denotes the total number of gridpoints in 2D. This ODE-system is again
time-integrated with DASSL [10].

4.2.3 Numerical results
4.2.4 Kinematic flux expulsion

This model problem dates back to 1966 [17], as one of the first studies to
address the role of the magnetic field in a convecting plasma. Starting from a
uniform magnetic field, its distortion by cellular convection patterns was sim-
ulated numerically for various values of the resistivity ¢,,. We use this model
problem to compare the 2D with the 1.5D approach for two-dimensional
moving grids.

Our 2D kinematic flux expulsion uses an imposed four-cell convection
pattern with its incompressible velocity field given by

v(z,y) = (sin(27x) cos(2my), — cos(2mx) sin(2my)).

We solve for the scalar vector potential A from (27) on the domain (z,y) €
[0,1] x [0,1] and for times ¢ € [0,0.5]. We set the adaptivity parameter « to
unity, and 7 = 1072, 0 = 1. The grid dimension is 25 x 25, while the resis-
tivity is set equal to €, = 0.005. In terms of As, the initial uniform vertical
field is obtained through As|;—¢ = 1 — z, while the boundary conditions are

A3|.z‘:0 - 17 A3|.z‘:1 - 07 A3|y:0 - A3|y:1-

18



I\
o7 ,I '3\\\\‘
0.6. ‘ ‘1 \4,'
//I’I” I

PSS

0 01 02 03 04 05 06 07 08 09 1

09 B SN "‘;"l
A
Al

\

0 01 02 03 04 05 06 07 08 09 1

P e DS
P TIIIN e TI
foe NN ST TN
* RN /A
Kl lk
SNSRI
By N
e SRR bee)
\\(‘ﬁ'(// ) \\‘W/
Ol s i T
REEZonu R B B I i
wal 447 \\”} {//-\\\
zﬂ‘ ,17 NTV ‘;x
02 t 7 AN
N i
\\\Q///f AR R

o1t \\\4)/7///‘ t \\\¥//

NN, RN —

01 02 03 04 05 06 07 08 09

Figure 6: Three solution strategies for 2D kinematic flux expulsion compared:
each row shows for time ¢ = 0.5 the grid, the solution for the vector potential
As(z,y) as a surface plot, and as a contourplot (showing magnetic field lines)
with fixed contour levels at A3 = 0 : 0.05: 1. Top row uses a 25 x 25 two-
dimensionally deforming grid, middle row uses restricted 1.5D adaptivity,
bottom row is a 100 x 100 reference solution. The imposed velocity field is
depicted at bottom left.
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In Fig. 6, we compare the grids and the obtained solution As(z,y) at time ¢ =
0.5 for three simulation results. The top row uses a full 2D grid deformation,
the middle row takes the 1.5D adaptivity approach, while the bottom row
shows a reference VAC solution on a 100 x 100 uniform, static grid. The
solution is both shown as a surface and a contour plot, with the contour values
varying between 0 and 1 with steps of 0.05. Note that the 1.5D deformation
works well for this case, since the steep parts of the solution mostly vary in
the z-direction. Although the 2D-grid shows slightly sharper contour lines
in the middle of the domain, the 2D deformation may breakdown at some
point of time. For both cases we gain a factor of 16 in the total number of
grid points compared with the reference solution.

4.2.5 Advection of a current-carrying-cylinder

To demonstrate the dimensionally split grid adaption on a case where truly
2D deformations are required, we solve for the circular advection of a current-
carrying cylinder (taken from [13]).

With a computational domain of size (z,y) € [—50,50] x [—50,50], we
embed an isolated magnetic ‘flux tube’ in a circulatory flow. The cylinder 1s
specified by

Aslimo = { R/2 —[(x — 20)? + (y — y0)?]/2R if (z — z0)? + (y — yo)? < R,

0 elsewhere,

and is initially centered at (zo,y0) = (0,25) with radius R = 15 and the
magnetic field strength increases radially from zero to one at the cylinder
edge. In terms of a current J = V x B, the cylinder has a constant axial
current throughout.

We simply rotate this current-carrying cylinder around (counterclockwise)
by imposing

v(z,y) = (—y,x).

When we solve for times ¢t € [0,2n], we then follow one period of revolution
of the cylinder, at which time the initial configuration must be regained. The
method parameters are: adaptivity parameter a = 200 (due to the scaling-
effect), 7 = 1073, 0 = 1. We now use the dimensionally decoupled adaptivity
on a 25 x 25 grid and a dimensionless artificial diffusion of 0.5 x 107,
Boundary conditions do not play a role in this example, so we simply took
homogeneous Dirichlet conditions Aslsq = 0 everywhere. In Fig. 7 we see
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Figure 7: For initial time ¢ = 0 (top row) and after one rotation at time
t = 27 (bottom row): Grid, surface plot of the potential A3, and magnetic
field lines for the current-carrying cylinder model with fixed contour levels
at A3 =0:0.325 : 7.5. The top left frame shows the imposed circulation as
a vector field.

the grids, solutions, and contourplots at { = 2. The adaptive grid is nicely
situated around the cylinder, although the solution is slightly smoothed by
the artificial diffusion term, which can also be seen in the contourplot.

4.2.6 Conservation of V-B = (0?

To investigate how the adaptive method copes with the important property
V- B = 0, we now take the full (By, By) system given by (25)-(26). Note
that the current-carrying-cylinder model is not appropriate for this purpose,
since the initial condition for the (Bj, By) system consists of piecewise linear
parts (this follows from the initial condition for A3 and B :=V x A). As a
consequence, constant weight functions Wy and W5 are obtained and therefore
a uniform grid for all ¢ > 0, independent of the choice of the adaptivity
parameter . For this reason, we examine the (B;, B;) version of the model
in 4.2.4 with initial conditions By|—g = 0, By|i=o = 1 and periodic boundary
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Figure 8: The divergence of the magnetic field for the solution in (4.2.6) at
time t = 0.1 on a 30 x 30 adaptive grid. We evaluated the divergence from
a centered difference formula.

conditions. For simplicity we take the 1.5D approach. In Fig. 8, we show a
plot of V-B =0 on a 30 x 30 adaptive grid at ¢ = 0.1, as evaluated from a
central difference discretization:

i1, 1,:—1, 2,2,7+1 2,2,7—1
[V B = 0]27‘7 ~ J J + J J .

Tit1 — Li-1 Yi+1 — Yji—1

Numerical values of ||V -B||. for different grid sizes are: 0.2117 (on a 20 x 20
grid), 0.2104 (25 x 25 grid), and 0.1743 (30 x 30 grid). The main conclusion
from these results is that, although the grid concentrates near areas of high-
spatial activity, the solenoidal condition on the magnetic field is not preserved
satisfactorily at all. This is a severe drawback of the current method-of-lines
implementation. A possible remedy for this could be adding a projection
scheme after every time step, i.e. applying a Poisson solver to correct the
divergence of the magnetic field [1].

5 Conclusions

In this paper we applied the adaptive method-of-lines technique to various
1D MHD problems and 2D magnetic field evolution simulations. In 1D, ac-
curate numerical results were obtained for three important test cases. The
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method could further benefit from specific MHD properties that have not
been exploited in the present implementation. For the 2D case, the adap-
tive method with restricted grid motion performed comparable to fully 2D
adaptive simulations. This is of interest for easier generalizations to 3D cal-
culations. Future work will consist of fully 2D MHD simulations and 3D
applications (model problems could e.g. be taken from [6], [9]). From our
results, it is clear that attention should be paid to means of maintaining
pressure positivity in very low pressure situations, more physically based ar-
tificial diffusion terms, and an appropriate remedy for ensuring the solenoidal
condition on the magnetic field vector in combination with the adaptive grid
method for multi-dimensional applications. To allow for the latter applica-
tions, we will switch to the use of iterative methods for the linear systems
behind the Newton-process in the stiff ODE-solver.
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