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Abstract 

In this paper two different moving-mesh methods (r-refinement) are applied to evolutionary PDE models 
in one and two space dimensions. The first method (moving finite elements) is based on a minimization of  
the PDE residual that is obtained by approximating the solution with piecewise linear elements. The second 
method (moving finite differences) is based on an equidistribution principle with smoothing both in the spatial 
and the temporal direction. Theory predicts that the finite-element based moving-mesh method moves its grid 
points with the flow of  the PDE, whereas the finite-difference based method moves its grid points with the 
steep parts of  the PDE solution, respectively. Numerical experiments show some differences and similarities 
between the finite-element and finite-difference case when applied to 1D and 2D time-dependent models of  the 
convection-diffusion-reaction type. © 1998 Elsevier Science B.V. 

1. In troduct ion  to r -re f inement  

The class of adaptive methods can roughly be subdivided into three sub-classes. The first, charac- 
terized by the term h-refinement, consists of methods which add grid points in regions of high spatial 
activity and delete grid points in areas with almost constant solution behaviour. The second type of 
method, denoted by p-refinement, increases or decreases the order of approximation in appropriate 
regions of the domain, r-refinement methods, however, keep both the number of unknowns and the 
order of approximation constant, while moving the grid points in a dynamic way with the steep parts 
of the solution or other characteristic features of the underlying model. This paper treats two different 
methods from this class. Of course, it is possible and, in practice appropriate, to combine different 
types of methods, e.g., to work with h-p-, h-r-, r-p-, or even h-p-r-refinement. 

During the last decade, r-refinement methods have been shown to be very useful for solving parabolic 
and hyperbolic partial differential equations involving fine scale structures such as steep moving fronts, 
emerging steep layers, pulses and shocks. In one space dimension moving-grid methods have been 
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applied successfully to a large class of PDE systems (see, e.g., [2,5,6,9,10]). In two space dimensions 
application of moving-grid methods is far less trivial than in 1D (see [3] however). 

The first method in this paper is a moving-finite-element method (MFE) which is derived by min- 
imizing the PDE residual obtained from the approximation of the solution with piecewise linear 
elements [1,6]. The second method is a moving-finite-difference method (MFD) which is defined by 
first transforming the PDE to its Lagrangian form and then coupling the discretized equations to the 
equidistribution based moving-grid equations. Numerical experiments show results for both the finite- 
element and finite-difference case when applied to PDEs in 1D and 2D with convection, diffusion 
and reaction terms. Note that the intention of this paper is not to compare both methods, but rather to 
indicate the main differences and similarities in grid properties of MFE and MFD. 

2. r-refinement with finite elements 

Consider the following time-dependent PDE in d space dimensions: 

0'4 
O~ = 6A'u. - 9 "  V u  + S := £(u) ,  (1) 

for x C ~2 C R a, t > 0, with u -- 0 on the boundary 0X2 (for the purpose of this description) and 
initial condition for t = 0. In (1) 6 > 0, 3 -- ( i l l , . . . ,  ,Jd) T, S and/2 represent a diffusion parameter, 
a velocity field, a nonlinear source term and a general right-hand side PDE operator, respectively. 

Approximate the PDE solution by 

M 

= { }),  (2) 
j = l  

where M denotes the total number of grid points, and ctj are piecewise linear 'hat' functions on a 
time-dependent grid {Xa: (t) }. 

Differentiating with respect to time 
( X l , j ( t ) , . . . ,  Xd, j ( t ) ) ,  we obtain 

j l k  1 1 

t and using the time-dependence of the grid points 

(3) 

where % j  = OU/OXt , j  and the dot stands for d/dr. The equations determining the semi-discrete 
unknowns UJ, Xl,j  . . . . .  X<j  are obtained by minimizing the PDE residual 7~ without restriction to 

21,  . . . . .  where  
) 

OU £(U)  ~ + Q2. (4) 
7¢ := ~ -  2(o) 

The second term Q2 is a regularization term containing small parameters e~ and c 2 to prevent the 
parameterization (3) from becoming degenerate (for more details see [6,10] or remark below about 
mass-matrix). The minimization yields the stiff ODE system 

= (5) 
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with C = ( . - - ,  Uj, Xl,5,..., Xd,j,...)T and an initial vector C(0) containing the initial solution vector 
U(0)  and the initial grid vector Xd(0) .  In (5) .Adl is an extended mass-matrix, which is strictly 
positive-definite for c 2 ) 0, but may be singular when s 2 = 0. The choice for the two regularization 
parameters (0 < c 2 << 1, 0 < e22 << 1) is not essential for this paper, in which we describe the 
grid properties, although it would be of  importance for more general applications. In the numerical 
examples the values are z~ = 1 0  - 4  and e~ = 10 10. 

For d = 1, it can be shown that the grid points in the semi-discrete equations (5) in the limit 
( M  -* oc) satisfy 

:{.=~+b[2 u:~.~:x 3 ~'~: ] u ~  - (x J '  (6) 

where ( is a transformed space variable (see, e.g., [10]). In steady-state situations it can be derived 

from (6) that the grid is equidistributed according to the rule (x~W)~ = 0, with a weight-function 

i~'V = iv, x]J/3lu:~]2/3. This indicates that grid points are expected to be concentrated in regions of  
large second derivatives. 

In contrast with the 1D situation no theory is available to predict such an 'equidistributional' 
behaviour in the two dimensional case. However,  it is conjectured that for d = 2, without regularization 
terms (i.e., with c 2 = c~ = 0), the grid movement  satisfies 

2~ = /31 -J- (~'01 ~, ~ = /32 -J- 802 ,  (7)  

with functions 01 and (~2 depending on spatial derivatives. Note that (7) is a property of MFE and not 
the definition of  the grid motion. For more details on this method and more sophisticated implemen- 
tations, see, e.g., [1,3]. 

3. r-refinement with finite differences 

A moving-finite-difference method in two space dimensions (d - 2, see also [11]) is obtained 
by first transforming the PDE (1) to a PDE in a moving frame using a coordinate transformation 
x = x(~, ~l, 0), y = y(~, 77, 0), t = 0. This gives the Lagrangian form of the PDE 

- - = £ ( u ) ,  

where the dot stands for 0/O0. Defining a t ime-dependent spatial grid ({Xi( t )} ,  {Y/(t)}) the La- 
grangian form is semi-discretized using central differences for the spatial derivatives: 

where Li is the discretized form of £ on a non-uniform grid. To complete the ODE system, the 
following moving-grid PDEs are semi-discretized: 

- -  = ° '  j = 0 ,  (8) 

where the weight functions are 
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and the point concentrations (along coordinate lines) are rz := 1/x~ and m : -  1/y~l. 

In (8) ~ represents a smoothed point concentration 

~ : = ( i  ~(~c + 1)2~I 00@2 ) rz' 

where ~ is a spatial smoothing parameter (#~ is defined similarly in the :q-direction) and I is the 
identity operator. Loosely speaking, the weight functions V and W determine the shape of the grid 
distribution and r~ the level of clustering. Eq. (8) describes a two-dimensional equidistribution principle 
with smoothing. With ec = 2 rather modestly graded space grids are obtained. The parameter 7- in (8) is 
connected with the temporal grid smoothing and serves to act as a tool for suppressing grid oscillations 
in time (for more details, see [1 0]). The parameter c, controls the level of adaptivity. Semi-discretization 
of (8) combined with the discretized Lagrangian PDE gives a stiff system of ODEs 

M2(¢ ,  = He(C), t > 0, (9) 

with ¢ defined as for the MFE method. 
In the following two sections numerical experiments are described using the moving grid methods 

defined by (5) and (9). Both MFE and MFD define a stiff ODE system with a banded matrix that 
can be solved using the ODE package DASSL [8]. In all cases, we have used a time-tolerance 
TOL -- 10 -3 for DASSL, a uniform starting grid ( { X i ( O ) } ,  {~(0)}) ,  and a 'standard' choice for the 
method parameters, i.e., ct = 1, ~; = 2, 7- = 10 -3 for MFD (see previous section for MFE parameters). 
Here, 'standard' means that this parameter choice could generally be used if the PDE is well-scaled 
in time and space, e.g., Y2 = [0, 1] 2 and the cr i t ica l  time-scale of the problem is ~ ~ [0, (._9(1)]. 

4. N u m e r i c a l  e x a m p l e s  in 1D 

In 1D the semi-discrete MFE and MFD equations can be deduced from (5) and (9) by restricting 
all operators and discretizations to one space dimension. 

To show the use fu lnes s  of r-refinement (even in 1D) the following example is given (on a fixed 
uniform grid several thousand grid points would be required to obtain similar accuracy!): 

E x a m p l e  1. The Gray-Scott reaction-diffusion system for two irreversible chemical reactions "H + 
212 --+ 312, 12 ~ 79'' is defined by 

Ou i3~ _ 62Av + u v  2 _ B y .  (10) Ot -- Au - v,v 2 + A(1 - ~t), 0-7 -- 

Here A stands for the rate at which/ / / is  fed from the reservoir into the reactor and /g2 ( : =  B -- A) for 
the rate at which 12 is converted to an inert product P .  As an example,/d may represent 'ferrocyanide' 
or 'sodium hydroxide', and 6 ̀2 a non-dimensionalized diffusivity constant of the chemicals. In Fig. 1 
the grid history (401 grid points) and the solution at L = 2400 are given for MFD. A smooth grid, 
both in time and in space, is obtained which follows the important features in this model. For more 
details about this application we refer to [4]. 
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Fig. I. Moving-f ini te-di f ference results for the 1D react ion-di f fus ion  system (10). Left: grid history, and right: solutions at 
t = 3000 ( - - - :  u and - - :  v). 

To show the main difference in behaviour of the two described r-refinement methods it is illustrative 
to look at the following simple model: 

Example 2. 

0 - ~ + ~ = 0 ,  u l x = o = u l x = ,  , u l t = o =  [sin(Tv(X+0.3))]  50 . ( l l )  

The exact solution, u(x, t) ---- [s in(:r(x-  t + 0.3))] 5°, is a moving pulse with constant velocity that pen- 
etrates the right-hand side boundary and re-appears at the left boundary, due to the periodic boundary 
conditions. We know from the theoretical properties that MFE will follow the pulse with almost exact 
speed, while keeping the shape of the pulse without any numerical disturbance (cf. (6) with (5 = 0). 
However, at t = 0.6, we see in Fig. 2 that the method tries to move its grid points through the bound- 
ary, not recognizing the 'new' pulse at the left boundary and therefore collapses at the fight boundary. 
In the same figure (on the right) the corresponding grid is given for MFD. This method follows the 
solution derivatives smoothly and therefore recognizes the newly-formed pulse very rapidly. It is also 
seen that after t = 1 the MFD grid is much less smooth and somewhat 'diffused'. 

5. Numerical examples in 2D 

In two space dimensions the effects of collapsing grids can even be stronger. Consider the following 
hyperbolic PDE, which is a popular model for testing adaptive and non-adaptive numerical schemes [7]: 

Example 3. 

O~- + [ 3  V u  = 0, 2 7. • = 0, (12) 
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Fig. 2. Moving-grid results for Example 2; MFE (left) versus MFD (right). Note the difference in time-scales: the left picture 
is zoomed in to show the collapsing grid points at the right boundary more clearly. 

with `3 = :r(y I 1 3~:) T, .(2 = [0, 1] 2, and 
2 ; 2  

o, '/Air= 0 = e 200((x-0"5)2+(Y-0"65)2). 

The exact solution, ~(~', fl, t) = e -2°°((x-~(0)-o+(y '~(t))~-) (with r ( t )  = (2 + sin(Trt))/4 and s(t)  
(2 + cos( : r t ) ) /4) ,  describes a pulse that moves  around in circles with a constant speed. During this 
movement  the shape of  the pulse does not change. It is known that on a non-moving grid either the 
solution is damped out rapidly due to numerical diffusion or unnatural oscillations may appear. In Fig. 3 
test results are displayed using MFE and MFD. Following the flow in the model (cf. (7) with 6 -- 0), 
MFE tends to twist the grid structure. The solution accuracy is very high however:  the contourlines 
remain almost undisturbed during the time-integration. It should be noted that reconnecting the grid 
points may only help the method temporarily, since the circular motion of  the grid points remains 
throughout the time-integration. 

For MFD less grid distortion occurs: the grid points now follow the gradients of  the solution. For 
later points of  time (e.g., t = 1.0) a slight instability in the grid motion seems to arise, yielding a 
more ' skewed'  grid than for t = 0.5. This strange phenomenon should still be investigated further. 
Regridding combined with mesh movement  (h-r-ref inement)  may be beneficial for these types of  
models, at least for MFD. 

To show the 'equidistribution-like' behaviour of  the MFE grid in 2D, in Fig. 4 MFE results are 
shown at two different points of  time for the 2D version of  the reaction-diffusion model (10). Now 
we see, in contrast with the hyperbolic model, a nice positioning of  grid points near steep transitions 
in the solution without grid distortion (cf. (7) with ,3 = (0, 0)T). We predict a similar behaviour for 
general reaction-diffusion systems in 'any'  space dimension. 

6. Conclusions 

The finite-element based r-refinement method, MFE, for which a formulation is possible in 'any'  
space dimension, follows the flow (PDE characteristics) in the model. For reaction-diffusion PDEs 
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Fig. 3. Moving-grid results for Example 3 at t = 0.5 and t = 1; MFE (top) versus MFD (bottom). 
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Fig. 4. MFE grid for the 2D reaction-diffusion system (10) at ~ 20 (left) and t = 50 (right). 

it produces  smooth  adaptive grids without  distortion ( fo l lowing  n o w  the solution characteristics).  On 
the other hand, for P D E s  with strong convec t ion  terms accurate solutions can be expected,  h o w e v e r  
on poss ib ly  twisted grids. 

The finite-difference based r-ref inement  method,  M F D ,  can be formulated in one  and two space 
d imens ions ,  and f o l l ows  the steep parts o f  the P D E  solution itself. Satisfactory results are obtained on 
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simple test problems in 2D. There is room to improve the underlying moving-mesh PDEs with respect 
to grid quality and numerical efficiency in solving the semi-discrete ODE system. 

As a recommendation, it could be stated that MFD may be used to efficiently approximate solutions 
of convection-diffusion-reaction systems in one space dimension having steep moving transitions (in 
2D the method needs to be investigated further before drawing any final conclusion), and MFE may be 
used for reaction-diffusion systems in 'any' dimension (one should be aware of possible grid-distortion 
when first-derivative terms are present in the PDE model though). 

In general applications it could be beneficial to define an h-r-refinement technique for both of the 
described methods in order to deal with possible grid de-generations. 

References 

[1] M.J. Baines, Moving Finite Elements (Clarendon Press, Oxford, 1994). 
[2] N. Carlson and K. Miller, Design and application of a gradient-weighted moving finite element code, Part I, 

in 1D, Technical Report 236, Purdue University, West Lafayette, IN (1994). 
[3] N. Carlson and K. Miller, Design and application of a gradient-weighted moving finite element code, Part II, 

in 2D, Technical Report 237, Purdue University, West Lafayette, IN (1994). 
[4] A. Doelman, T.J. Kaper and EA. Zegeling, Pattern formation in the one-dimensional Gray-Scott model, 

Nonlineari~' 10 (1997) 523-563. 
[5] W. Huang, Y. Ren and R.D. Russell, Moving mesh partial differential equations (MMPDEs) based on the 

equidistribution principle, SIAM J. Numer. Anal. 31 (3) (1994)709-730. 
[6] K. Miller and R.N. Miller, Moving finite elements I, SIAM J. Numer. Anal. 18 (1981) 1019-1032. 
[7] C.R. Molenkamp, Accuracy of finite-difference methods applied to the advection equation, J. Appl. Meteorol. 

7 (1968) 160-167. 
[8] L.R. Petzold, A description of DASSL: a differential/algebraic system solver, in: R.S. Stepleman, ed., 

IMACS Transactions on Scientific Computation (1983). 
[9] EA. Zegeling, J.G. Verwer and J.C.H. van Eijkeren, Application of a moving-grid method to a class of 1D 

brine transport problems in porous media, Internat. J. Numer. Methods Fluids 15 (2) (1992) 175-191. 
[10] EA. Zegeling, Moving-grid methods for time-dependent partial differential equations, CWI Tract No. 94, 

Centre for Mathematics and Computing Science, Amsterdam (1993). 
[11] EA. Zegeling, A dynamically-moving adaptive grid method based on a smoothed equidistribution principle 

along coordinate lines, in: B.K. Soni, J.F. Thompson, J. Hfiuser and P. Eiseman, eds., Proc. 5th International 
Conference on Numerical Grid Generation in Computational Computational Field Simulation, Starkville 
(1996). 


