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SUMMARY 

The background of this paper is the study of transport of pollutants by groundwater flow when released 
from a repository in a rock salt formation. Flow in regions surrounding such formations may be strongly 
influenced by variations in salt concentrations, a factor requiring special attention in the development of 
realistic mathematical models for predicting transport of pollutants. Indispensable for this development are 
advanced numerical methods. The aim of this paper is to  illustrate the application of such a method to a 
class of non-linear brine transport problems in one space dimension. Our method is based on the method of 
lines for solving time-dependent partial differential equations. The method is of the finite difference type, 
implicit and thus applicable to wide classes of (one-space-dimensional) partial differential equation systems. 
The main feature of the method, however, is that it can automatically move the spatial grid for evolving time 
and thus is able to refine the grid in regions with large, special transitions. The grid refinement has proven to 
be a very valuable facility in the numerical modelling of brine transport problems involving low and high salt 
concentrations. From the user’s point of view an additional advantage of the moving grid method is that it 
can be implemented in advanced, user-oriented method-of-lines software packages based on implicit stiff 
O D E  solvers. In the brine transport application discussed here we have used the package SPRINT. 

KEY WORDS Fluid flow/solute transport in porous media Groundwater flow Moving grid 
Finite difference method Method of lines 

1. INTRODUCTION 

The subject of this paper originates from the problem of disposal of hazardous waste, e.g. high- 
level radioactive waste, in salt formations. The most probable mechanism for release of these 
wastes to the biosphere is by transport via groundwater. Existing standard mathematical models 
for the study of groundwater flow and brine transport assume that the salt concentration is less 
than or equal to seawater concentration. This, however, is not true for flows in the vicinity of rock 
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salt formations. In the vicinity of these formations, e.g. salt domes, the salt concentration may 
become very large and in fact to an extent that the groundwater flow is really influenced by the 
salt concentration. Recent theoretical and experimental hydrological studies indicate that for 
such high-concentration situations the basic equations of flow and transport involved need to be 
modified.'-2 This incurs a significant effort in numerical modelling since the partial differential 
equations (PDEs) which show up cannot be solved by analytical means. The content of the 
current paper has its origin in part of these numerical modelling studies. 

We discuss the application of a numerical moving grid method, originally developed for 
general time-dependent PDEs in one space dimension, to a specific class of non-linear brine 
transport problems borrowed from Reference 3. Our purpose is twofold. Firstly, whib focusing 
on the application, we wish to show that this numerical method is a valuable tool for modelling 
non-linear (brine) transport problems in one space dimension, specifically so for problems having 
solutions with rapid transitions, such as a solute front transported in the soil or a sharp fresh-salt 
water interface. Secondly, while now focusing on the numerical analysis aspects, we wish to show 
that for the class of transport problems chosen, the grid movement approach is successful and 
may provide a notable improvement compared to the more traditional approach of time stepping 
on a fixed spatial grid. 

The numerical method is based on the method-of-lines (MOL) approach for solving time- 
dependent PDEs (see e.g. Reference 4, Chap. 10, and Reference 5).  The method is of the finite 
difference type, implicit and thus applicable to wide classes of one-space-dimensional PDE 
systems. In addition, the main feature of the method is that for evolving time it automatically 
refines the spatial grid in regions with large spatial transitions. Since it is a Lagrangian-type 
method, in many cases of practical interest the grid movement also softens the solution behaviour 
in time, so that larger time steps can be taken than on a fixed spatial grid. The actual moving grid 
algorithm underlies the principle of spatial equidistribution and is provided with appropriate grid 
regularization procedures to cater for smooth grid trajectories. The principal ideas for this 
regularization emanate from Reference 6 and a further comprehensive discussion of the complete 
moving grid algorithm can be found in Reference 7 (see also Reference 8 and references cited 
therein). 

An advantage of the moving grid method is that it can be implemented in most of the MOL 
software packages based on sophisticated implicit stiff ODE/DAE solvers. We mention the BDF 
solvers developed by Gear, Byrne, Hindmarsh, Petzold and others (see e.g. Reference 9). In the 
brine transport problem application we have used the FORTRAN package SPRINT." SPRINT 
is a package developed for solving general algebraic, ordinary and partial differential equations. 
So far SPRINT has been used mainly for one-space-dimensional problems, since its core is 
formed by implicit stiff ODE/DAE solvers (of BDF type). In Reference 11 SPRINT has been 
provided with a software interface based on the moving grid method considered here. This MGI 
(moving grid interface), being an extension of the fixed grid interface based on Reference 12, is a 
most convenient tool for researchers who wish to concentrate on modelling their physics, since it 
automatically carries out the spatial discretization, thus relieving them from numerical choices to 
be made and saving programming time. The use of MGI merely requires that the mathematical 
problem be formulated in terms of FORTRAN statements. Consequently, both the spatial 
discretization and the temporal integration can then be left to the package and the user only has 
to set to some numerical control parameters, such as a local tolerance parameter for the 
numerical integration in time, the number of points for the spatial discretization and some 
parameters controlling the grid movement. In the experiments reported here we have used the 
MGI from Reference 11. 
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Section 2 is devoted to the moving grid method. An outline is given of important properties and 
principles of this method. The class of fluid flow/salt transport problems we focus on is discussed 
in Section 3. The physical properties involved here are advection-dispersion; in the case of 
dominant advection, solutions with rapid spatial and temporal transitions arise. In Section 4 we 
present results of numerical tests, emphasizing the occurrence of the rapid transitions and the use 
of the moving grid method. Section 5 is devoted to concluding remarks. 

2. THE MOVING GRID ALGORITHM 

2.1. The moving grid algorithm 

We will present the algorithm along the lines of the numerical method-of-lines (MOL) 
approach for solving time-dependent PDEs. Consider an abstract Cauchy problem for a system 
of PDEs in one space dimension, 

au 
,,=f(u), X ' < X < X R ,  t > O ,  (1) 

where u = u(x ,  t) and f is a spatial operator of at most order two. We do  not discuss boundary 
conditions here since these are dealt with in the usual way. It is assumed that the solution u has 
(a sufficient number of) finite temporal and spatial derivatives and these are allowed to be very 
large. We thus focus on problems possessing solutions u with very large spatial and temporal 
variations but do not consider problems with genuine discontinuous solutions. 

The discretization of the PDE system is carried out in two stages. In the first stage f(u) is 
discretized on a selected space mesh, which converts (1) into a Cauchy problem for an ODE 
system. The second stage then deals with the numerical integration in time of this semidiscrete 
system. Let us discuss the first stage, which takes place here in a moving reference frame. First we 
choose N time-dependent grid points Xi( t ) ,  1 < i < N ,  defining the space grid 

x :  x , = x , < .  . . < X i ( t ) < X i + l ( t ) < .  . .<XN+I=XR,  t > O .  (2) 
As yet the trajectories X i ( t )  are unknown, but they are assumed to be (sufficiently often) 
differentiable. Next, along each trajectory x ( t )  = X i ( t )  we introduce the total derivative 

(3) u'=x'u ,  + u, = X ; u ,  + f ( u ) ,  1 < i <  N ,  

and spatially discretize the space operators J / a x  and f so as to obtain the Lagrangian 
semidiscrete system 

V ;  = X i [ (  U,, - q- l ) / ( X i + ,  - X i -  + F , ,  t > 0, 1 < i <  N .  (4) 

Here Ui and 4 represent the semidiscrete approximations to their exact counterparts u and f at 
the point ( x ,  t )=(X,( t ) ,  t). The finite difference replacement for f is in principle still free to be 
choosen. We discuss this in Section 2.3. Note that we use the standard, central finite difference 
approximation for u,. Also note that the boundary values U ,  and UN + are to be defined from the 
semidiscretization of the physical boundary conditions. 

The internal grid points X i  are still free to be choosen. The purpose is to let them move 
automatically such that X becomes fine in regions of high spatial activity and coarse in regions 
where the spatial variation is low. One way to accomplish this is to apply equidistribution. For this 
purpose we introduce the point concentration values6 

n i = ( A X i ) - ' ,  A X i = X i + l  - X i ,  O < i < N ,  ( 5 )  
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and the equidistribution equation 

ni- l / M i -  = n , / M , ,  1 < i <  N ,  (6) 
where M i  2 Ju > 0 represents a so-called monitor value that reflects the variation in space. The 
parameter u > O  serves to ensure that M i  remains positive. Trivially, n, is proportional to M i .  Thus 
the equidistribution idea assumes that if some measure of the spatial error is available, here taken 
to be represented by Mi, then a good choice for the grid X would be one for which the error is 
equidistributed over X .  

in applications the monitor M i  is usually taken to be a semidiscrete replacement of a solution 
functional m(u) containing one or more spatial derivatives (note that the variables q and X i  are 
still time-continuous). Lest we miss the obvious, the choice of monitor is important because it 
plays a decisive role in the actual local grid refinement. Following References 7, 8 and 13, in the 
present implicit MOL approach we advocate the first-derivative monitor 

f l j (AU{)2 (AX{) -2  , A U i =  U i +  - U i ,  
1 NPDE 

(7) 

where NPDE denotes the number of PDEs in (1) and U {  is the jth component of the vector 
variable Q. Note that at a given point of time, (7) is a semidiscrete replacement of m(u)= 
(a + )I u, I\’)’’’, where 11 . I1 is the weighted Euclidean norm involved. With a= 1 we have the well 
known arc-length monitor which places grid points along uniform arc-length intervals. We use a 
as a parameter which can eventually be used for tuning purposes. In fact, the main purpose of this 
tuning parameter is to keep the monitor values positive, saying that a small value of a suffices. 
Clearly, a should not be taken too ‘large’ compared to the maximum of I( u, (1 *, since this would 
result in a uniform grid, approximately. The weighting parameters fli in (7) serve to make it 
possible to let certain components dominate the equidistribution. This may be desirable in the 
case of a badly scaled problem, for example. The actual choice of the monitor parameters 
a, fll , . . . , flNPDE will influence the outcome of a numerical simulation and therefore their optimal 
choice is problem-dependent. On the other hand, our experience is that with the monitor (7) the 
method is quite robust and a bad choice merely affects the resulting 
accuracy. This means that given a well described problem class such as the brine transport 
problems, a close-to-optimal choice is normally easy to determine. 

2.2. Grid smoothing 

The Cauchy ODE problem resulting from the first MOL stage thus reads 

U ! = X t [ ( q + , - q - , ) / ( & + , - X i -  l)]+&, t>O, 1 < i < N ,  (88) 

ni- /Mi- = n i / M i ,  t >O, 1 <id N .  (8b) 
After prescribing initial data for Q and Xi, 1 < i < N ,  and the boundary values U, and U,+ from a 
semidiscretization of the physical boundary conditions, system (8) can be numerically integrated 
in time so as to obtain the final fully discrete solution on the moving grid X .  However, since (8b) 
prescribes X in an implicit way in terms of the unknowns q, there is little control over the grid 
movement. For example, it may happen that the grid distance A X ,  varies extremely rapidly over 
X or that for evolving time the trajectories X i ( t )  tend to oscillate. A too large variation in AXi  
may be detrimental to spatial accuracy, and temporal grid oscillations do hinder the numerical 
time stepping since the grid trajectories are computed automatically by numerical integration. 
Following References 6-8, we therefore employ two so-called grid-smoothing procedures, one for 
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generating a spatially smooth grid and the other for avoiding temporal grid oscillations. This 
involves a modification of the grid equation system (8b). 

The modified grid equation system is given by 

d 
ni- , ) /Mi -  , =( n i + t  n i ) /  Mi, t>O,  1 < i <  N ,  (9) 

~ h e r e n ~ = n ~ - ~ ( t i + l ) ( n ~ + ~ - 2 2 n ~ + n ~ - ~ ) ,  with n - ,  =no and nN+' =nN. Wenotein passing that in 
the actual implementation n, is replaced by (AXi)-' and n: by -AXi/(AXi)2. The modification 
thus results in a five-point-coupled, time-dependent grid equation system. A consequence of the 
grid smoothing is that in addition to the monitor parameters a, PI , .  . . , bNPDE, two new grid 
parameters have been introduced, namely K and t. 

The parameter I C > O  is connected with the spatial grid smoothing. Any grid X solving (9) 
satisfies 

ti ni-1 K + l  ---<-<---, ~ + 1  n, K 

showing that we have control over the variation in AX,. Through ti we can control grid clustering 
and grid expansion. Loosely speaking, the monitor function still determines the shape of X, and K 

the level of clustering. Note that the extreme value IC= oc) yields a uniform grid. Of importance is 
to emphasize that for a given number of points N and any given distribution of monitor function 
values Mi, IC determines the minimal and maximal interval lengths (see e.g. Reference 7). In actual 
application the minimum should of course be related to the expected small-scale features in the 
sought solution. In our application we choose ~ = 2 .  With this value of IC we not only obtain a 
rather modestly graded space grid but also keep a sufficient number of points within the actual 
transitions of duldx. 

The parameter t 2 0 is connected with the temporal grid smoothing and serves to act as a delay 
factor for the grid movement. More precisely, the introduction of the temporal derivative of the 
grid X forces the grid to adjust over a time interval of length t from old to new monitor values, 
which provides a tool for suppressing grid oscillations and hence to obtain a smoother progress- 
ion of X( t ) .  However, choosing t too large will result in a grid X that lags too far behind any 
moving steep spatial transition. In fact, it can be shown that for t-+ 00 a non-moving grid results. 
In situations where temporal grid smoothing is really advisable, one should therefore choose t 
not too large. For practical purposes a good choice is one which is close to the minimal temporal 
step size taken in the numerical integration, so that the influence of past monitor values is felt only 
over one or a few time steps. 

2.3. Integration in time 

We have now semidiscretized (1) on a moving grid. The semidiscrete formulation consists of the 
combined equations (8a)-(9), where ni =(AX,)-' and ni=- AX;/(AX,)' are used to convert the 
dependence on the point concentration values into a 'natural' dependence on the grid points Xi. 
Recall that the boundary values Vo and V,+ , are to be defined from the spatial discretization of 
physical boundary conditions. The equations can be written in the linearly implicit ODE system 
form 

where Y assumes the natural ordering of unknowns Vi  and Xi, i.e. Y = ( .  . . , V,!, . . . , UrPDE, 
X i ,  . . . ). Form (1 1) is a standard format for various well known stiff ODE/DAE solvers. Note that 
without temporal grid smoothing, (9) is of purely algebraic form, so that (1 1) then becomes a DAE 

A (  Y ) Y ' = L ( t ,  Y ) ,  t > O ,  Y(0) given, (1 1) 
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system. The numerical results in this paper have been obtained with the LSODI-based BDF 
solver of the SPRINT package. A similar solver is DASSL,' which we have also applied 
elsewhere.' It is of interest to note that in our moving grid application these solvers are employed 
in essentially the same way as in the conventional non-moving MOL approach. 

2.4. A moving grid interface 

Since the integration in time is done automatically by the stiff integrator, it makes sense to also 
automize the spatial discretization of the PDE operator with its boundary conditions. This is 
particularly attractive for researchers who wish to concentrate on modelling their physics, since it 
saves programming time and relieves them from numerical choices to be made. Such a FOR- 
TRAN interface for use with the moving grid method has been developed in Reference 11. We 
have also used this interface, called MGI, in the tests reported in Section 4. 

MGI is an extension of the fixed grid interface from Reference 12, which is available in the 
SPRINT package. The discretization is based on a central second-order finite volume scheme and 
covers the following PDE system: 

Index j runs from 1 to NPDE, uk is the kth component of the vector-valued function u, and R j  and 
Qj  can be thought of as flux and source or sink terms respectively. The parameter m serves to 
cover polar co-ordinates (m=l or 2). In our present application we work in Cartesian co- 
ordinates and thus m=O. The coefficient functions cjk, R j  and Qj are assumed to be at least 
continuous. The boundary conditions should fit the MGI master form 

xj(x,  t )Rj (x ,  t ,  u, u x ) = Y j ( x ,  t ,  u, ut, ux), x = x L ,  x R ,  (13) 
and the standard initial condition u(x ,  0) = uo is assumed. For a description of MGI with its 
underlying spatial discretization we refer to Reference 11. The fluid flow/salt transport problem 
fits this master form. 

3. THE 1D FLUID FLOW/SALT TRANSPORT PROBLEM 

Disposal of radioactive wastes in rock salt formations is being considered as a serious possibility 
by a number of countries. An integral part of the safety assessment of waste disposal is the study 
of mathematical models for nuclide transport to the geosphere via groundwater flow. Existing 
standard models for groundwater flow and salt transport assume that the salt concentration is 
less than or equal to seawater concentration. In such low-concentration situations the models in 
use have been sufficiently validated and in many cases of interest the fluid flow and the salt 
concentration equation can be treated uncoupled. However, for flows in the vicinity of rock salt 
formations the salt concentration may become high and influence the fluid density to an extent 
that it effects the fluid flow. On the other hand, salt is transported by the fluid and thus fluid flow 
and salt transport are mutually coupled. The existing standard models and their uncoupled 
treatment are then no longer adequate for safety assessment, which makes it interesting to study 
this intricate situation. Recent theoretical and experimental hydrological studies's * indicate that 
for such high-concentration situations the basic equations of flow and transport involved need to 
be modified, which requires a significant effort in numerical modelling. Here the moving grid 
method enters the scene, because in the high-concentration situations large concentration 
gradients also prevail, making the use of fixed grid methods inefficient. 
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In modelling the transport of M solutes by groundwater flow, generally M + 1 sets of equations 
appear, i.e. one set for each solute and a set for the flowing fluid.’ The set for the fluid (brine) 
constitutes the fundamental balance-of-mass property of the fluid supplemented by a Darcy law 
expressing conservation of momentum. Similarly, for each solute the associated set constitutes the 
balance-of-mass property supplemented by conservation of momentum through a Fickian-type 
law. If temperature changes are important, then an energy equation should be added. Also, if 
deformation effects of the porous medium and porosity changes are important, then an additional 
set of equations for the solid phase of the porous medium has to be provided. In the present study 
we do not consider temperature or deformation effects and assume only one solute, the salt. We 
thus consider an isothermal, single-phase, two-component saturated flow model in the idealized 
case of one space dimension. It is further assumed that no external body forces except gravity exist 
and that the two brine components, water and salt, do not react or adsorb. This specific model, 
which we have borrowed from an RIVM r e p ~ r t , ~  has been selected for demonstration purposes. 

The model comprises the following set of equations. For the fluid and salt we have respectively 

and 

aw 
J = - l l q l -  

a a 
- (npw)+--(pwq+pJ)=O, 
at ax ax 

and the fluid density p is assumed to obey the equation of state 

p = p o  exPCm-Po)+Ywl, (16) 
with constant reference density po, constant reference pressure p o ,  constant compressibility 
coefficient f l  and constant salt coefficient y .  Other constants are porosity n, permeability k, 
viscosity p, gravity g and dispersion length A. The various variables are the (Darcy) velocity q of 
the fluid, the hydrodynamic pressure p and the salt mass fraction o. We thus consider the medium 
to be homogeneous with respect to porosity, permeability and viscosity. However, inhomogenei- 
ties, and also sources and sinks, can easily be taken into account. 

The set of equations can be formulated as a system of two PDEs with pressure p and salt 
concentration w as independent variables. To this end we compute from (16) 

and substitute into (14) to obtain the fluid mass balance equation 
J P  aw a 
at at ax npb -- + npy  -= -- (pq). 

A further substitution yields the salt transport equation 

aw aw a 
n p  -=-pq - - - ( p J ) .  

at ax ax 

We have used this form as input for the numerical solution method. A few comments are in order. 
First, substitution of the expression for J into (19) yields the advectiondispersion equation 
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showing that in the present model the physical salt transport phenomena are advection and 
dispersion. Molecular diffusion is absent here. It is easily built in, however, since this merely 
amounts to adding a small constant to I(q1.  Assuming ‘frozen’ coefficients, we see that the Peclet 
number is 

where L denotes the physical length of the medium. Hence for I 4 L advection dominates and this 
is just the physical situation that gives rise to steep concentration gradients. Another point worth 
mentioning is that the compressibility coefficient is very small compared to the salt coefficient y. 
In fact, it is often zero, in which case the balance equation (18) reduces to 

and dp/at is absent. We then have two equations for do/at ,  of which (18) can be rewritten as a 
PDE containing only spatial derivatives. Hence this rules out the possibility of explicit time 
stepping. Note that if we also put y=O,  then the density p is constant and the mass balance 
equation reduces to the simple pressure equation pxx = 0. Of course, a zero salt coefficient y is not 
realistic in our application. 

To complete the model description, we must give the initial and boundary conditions. Defining 
the space-time domain as [0, L ]  x [0, TI,  the initial and boundary conditions we have imposed 
for w(x, t) and p(x, t )  are respectively 

o(x,O)=O, O G X G L ,  (234 
am 

w(0, t)=wo>O and -(l, ax t )=O,  O<t<T,  (23b) 

and 

P(X, O)= PO - x / L ) ~ l e r t  + ( x / L ) ~ r i g h t l ,  0 GX < G (244 

P(O, t)=POPleft and P(L? t)=POPrightr o<tG T, (24b) 
where oo is the left-end salt concentration and pIert and plight are pressure coefficients. 

We have selected these conditions with the aim of generating a travelling salt front. Note that at 
t = 0 there is no salt in the medium and that the inflow value wo >O. Hence, assuming appropriate 
model data, this should give rise to a travelling front. The steepness and speed of the front will of 
course be determined by the complete set of physical data. A characteristic set is given in Table I 
which comprises all data needed to run the problem, except for the end time T, the dispersion 
length I and the pressure coefficients pleft and Pright. Finally, numerically we have treated the 
problem in scaled, dimensionless form. We refer to Table I for the scaling relations with the 
dimensionless values of all quantities involved. From these relations one can check that all 
equations are left invariant (note that this also holds for (16) owing to the fact that after scaling, 
po = 1). Hence in the remainder we have worked with the same set of equations as discussed 
above. The pressure coefficients pIerr and Prigh, are left unchanged and will be specified with the 
numerical examples. 

4. NUMERICAL EXAMPLES 

We will present results of three numerical examples. To simplify the demonstration, these results 
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Table I .  Model data. Boldface notation is used for the non-scaled quantities 

Non-scaled Scaled 

Time O < t < T ( s )  t = t i t o ,  to=pLZ/kopo= lo4 
Space O < x < L  (m) x = x / L  
End time T (4 T= T/to 
Domain length L = l  m L =  1 
Pressure p (kg m- '  sC2) P = PfPO 
Salt concentration 0 w = o f 0 0  

Density P (kg m-3)  P = PIP0 
Permeability k = k o =  mz k=k /ko=  I 
Viscosity p = ~ o = 1 0 - 3 k g m - ' s - 1  P=P/PO= 1 
Reference pressure PO= lo5 kg m - '  s-', P o = l  
Salt inflow concentration 00 = 0.26 uo= 1 
Reference density PO= l o3  kg m-32 P o = l  
Gravity force 
Porosity n=0.2 n=0.2 

Dispersion length 2 (4 A=IfL 
Compressibility coefficient /I= lo-'' m s2 kg- '  p=ppo= 10-5 

g=9.81 m s- '  g = po Lg/po = 0.098 1 

Salt coefficient = 0.69, 7 = YWO = 0.1 794 

have been obtained with a fixed set of numerical control parameters: 

TOL= (temporal integration); (254 

~ = 2 ,  T =  a= lo-', =0, pz= 1 (grid movement); (25b) 

Xi (0 )  = __ 0 < i < N + 1 (uniform initial grid). (25c) 
1 

N + 1 '  

SPRINT was called in standard mode, thus providing automatically an initial step size and 
Jacobian evaluation. The Euclidean norm was used for local error control, while (25a) was 
imposed for all components of the vector Y (NPDE = 2, u1 = p ,  u2 =o). Note that TOL = 10- is 
quite small. However, to accurately simulate the rapid birth of the salt front, which arises from the 
inconsistency between the initial and left-end salt concentrations, a small tolerance value is 
natural. We also emphasize that we always started on a uniform grid, just for convenience of use. 
This means that immediately after the start the method should rapidly cluster most of the grid 
points near the left boundary. 

The grid parameters take on more or less standard values, except for pl. The choice p1 = O  
means that the pressure gradient ap / i )x  is not taken into account in the monitor (7). We decided to 
omit d p / d x  in the monitor, since in our examples d p / d x  varies very slowly and thus acts more or 
less in the same manner as the constant regularization parameter a. In such cases, too large a 
value for the near-constant pressure gradient yields an unnecessarily large regularization effect. 
This in turn would imply that variations in the concentration gradient dw/dx become of lesser 
importance in the spatial equidistribution than desired. 

4.1. Example I 

The first example is defined by the data of Table I together with A=O.Ool, T =  5, pleft= 1.7 and 
pright = 1.0. With this choice initial pressure function the arising salt front travels to the right 
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boundary and finally renders a steady state for p and w with p equal to the linear initial pressure 
and w = wo = 1. The steady state starts to settle at about t = 2, long before the end time T =  5 has 
been reached. Consequently, owing to the uniform salt concentration, at about t = 2  the grid 
should again become uniform. Hence this example provides an interesting test for the moving grid 
method. The pressure p undergoes only a marginal change for t > 0 and below we will therefore 
only plot o. 

Figure 1 depicts the grid and salt concentrations at some values of t for N, = N + 2 = 25 and 50. 
We see that the grid accurately reflects the anticipated solution behaviour. At very early times the 
grid points rapidly cluster near x = 0, then the cluster travels with the front, and when the steady 
state is reached, a uniform grid appears. While N, = 25 results in a little overshoot at the top and a 
little smearing at the foot, N, = 50 gives already very accurate salt concentration profiles. The 
profiles for N = 100 (not shown here) do equal those for N = 50 up to plotting accuracy. 

Table I1 shows the integration history for N, = 25,50 and 100 and serves to provide insight on 
the costs of the implicit numerical integration method. The given data have the following 
meaning: STEPS, number of integration steps; JACS, number of Jacobian updates; RESIDS, 
total number of evaluations of the ODE system including those needed for the Jacobian updates; 
NITER, total number of Newton iterations; CPU, central processing time on an ALLIANT/FX4 
computer using one processor. Note that our decision to start on a uniform initial grid has its 
price. For example, for N , =  100 more than half the number of steps is used to reach t=0.1. In 
fact, at t =  10-3 and lo-’ we have STEPS = 39,152 and 271 respectively. A large number of 
these step are needed simply to adjust the initial grid to the very steep concentraion profile at the 
very early times (see the right upper plot in Figure I). Therefore somehow adjusting the initial 
grid to the expected solution profile at the first forward time level will reduce STEPS significantly. 
We also wish to remark that the method efficiently detects the steady state, since for t > 2  the 
temporal step sizes are rapidly increased and very few steps are required to complete the 
integration. Finally, we have also tabulated omaX-w,,, which is the maximal overshoot at  the 
given points of time. We see that already for N ,  = 25 the overshoot is very little. 

A further inspection of the salt concentraion plots shows that, as expected, the first-derivative 
monitor (7) places quite a number of points just within the front where d o / a x  is largest. 
Fortunately, the spatial grid smoothing resulting in relation (10) has the nice side effect of keeping 
a substantial number of points at the foot and top of the front, where d o l a x  becomes smaller and 
finally zero. This only works of course if K is taken not too small. Note that there should be 
enough points at the foot and top so as to avoid wiggles, since the spatial discretization is based 
on a common central finite volume scheme. For a comparison of results obtained with a second- 
derivative monitor based on m(u)=(a+ /luxx 1 1 2 ) 1 / 4  and with a fixed grid, the reader is referred to 
Reference 14. There it is concluded that the first-derivative monitor results are generally 
significantly better. 

4.2. Example II 
The second example is also defined by the data of Table I, but now pleft= 1.1 1, pright= 1.0, 

T= 500 and I=O.OOol. The smaller pressure gradient in the initial function has two effects. First, 
it yields a smaller fluid velocity, resulting in a larger time scale, which explains the larger value for 
T. The second and more interesting effect is that the travelling salt front now comes to a standstill 
before it has reached the right boundary. This happens at about t = 150, at which point of time the 
front lies near x = 0.6. The reason is that the fluid velocity q tends to zero, uniformly in x ,  which 
settles the system into a steady state and this takes place long before the salt front has reached the 
right boundary. We note that this phenomenon is rather special in the sense that it depends 
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Figure 1 .  Example I: grid lines and salt concentration profiles at t=0.1, 0.5, 1.0 and 5.0. The left part of each pair 
corresponds to N ,  = 25 and the right part to N ,  = 50. Note the difference in scaling in each of the two grid line plots 
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Table 11. Example I :  integration histories 

N 2  1 STEPS J ACS RESIDS NITER Wmax - 1.0 CPU (s) 

25 0 1  149 39 93 1 407 7.0 x 10-3 - 
0.5 198 47 1175 545 7 . 0 ~  10-3 - 

1 .o 220 52 1302 607 6.0 x 10- 3 - 

140 5.0 565 144 3532 1610 - 

50 0.1 202 53 1282 574 8.0 10-4 - 

0 5  225 58 1413 638 1.0 x 10-3 - 

1 .o 234 61 148 1 667 1 . 0 ~  10-3 - 

236 5.0 450 118 2904 1335 - 

100 0.1 30 1 83 1988 882 3.0 x 10-4 - 

0.5 317 87 2085 927 3 . 0 ~  10-4 - 

1 .o 326 89 2140 956 6.0 x 10-4 - 

566 5.0 529 142 3533 1648 - 

heavily on the initial pressure gradient. The standstill of the salt front is lost with a relatively slight 
change in this gradient. Also note that this standstill requires zero molecular diffusion, which in 
reality is of course not true. However, the simulation of this rather subtle situation provides a nice 
numerical test, since it requires an accurate balancing of gravity force pg and pressure gradient 
force dp/dx in the Darcy velocity expression (14b). Finally, we have made the dispersion length 10 
times smaller than in the previous example, giving a Peclet number of 10000 and a much steeper 
front (recall that the spatial discretization of MGI is based on a common central finite volume 
scheme). 

Figure 2 shows the computed grid and salt concentration profiles at some values of time for 
N ,  = N + 2 =25 and 50. As in the previous example, we see that the grid movement accurately 
reflects the anticipated solution behaviour. For early times it is completely similar, while for later 
times the cluster around the steep salt front remains in position. We also see that N ,  = 25 now 
results in more overshoot owing to the fact that the dispersion length is 10 times smaller than in 
the previous example. However, N ,  = 50 again gives a very accurate solution and the profiles for 
N 2  = 100 (not shown here) do equal those for N ,  = 50 up to plotting accuracy. 

Table 111 contains part of the integration history for N ,  = 25, 50 and 100, providing the same 
information as before. With this table we wish to draw attention to an inherent model difficult 
stemming from the absolute value function in the dispersion flux expression pJ =-pL(q(u, .  This 
difficulty manifests itself in the large number of time steps and Jacobian updates used over the 
‘near-steady-state interval’ [200, 5001 for N ,  = 100 (recall that the steady state starts to settle at 
about t = 150). While the code easily detects the numerical steady state solution with 25 and 50 
points, which can be concluded from the small number of steps needed to integrate from t = 200 to 
500, this is clearly not the case with 100 points. In fact, with 100 points this ‘near-steady-state part’ 
of the integration interval requires 1038-423 = 615 integration steps and 707 - 105 = 602 Jaco- 
bian updates, which is rather extreme. What has happened here is that the iterative Newton 
algorithm has repeatedly failed to converge, so that the strategy of the code keeps the temporal 
step size down and keeps asking for new Jacobians. 

The cause of the Newton convergence failure lies with (q (  if q % O .  The following observations 
explain this. Owing to the absolute value function, entries of the Jacobian matrix contain sign(q). 
Consequently, if q ~ 0 ,  then during the Newton iteration approximate values for q readily change 
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Figure 2. Example 11: grid lines and salt concentration profiles at t = l ,  10, 200 and 500. The left part of each pair 
corresponds to N ,  =25 and the right part to N, =50. Note the difference in scaling in each of the two grid line plots 
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Table 111. Example 11: integration histories 

N2 f STEPS JACS RESIDS NITER om,, - 1.0 CPU (s) 

25 1 160 
10 239 

100 335 
200 354 
500 373 

50 1 249 
10 300 

100 338 
200 355 
500 379 

100 1 312 
10 346 

100 410 
200 423 
500 1038 

40 958 
64 1509 
92 2155 
95 2244 

101 2371 

59 1473 
72 1787 
79 1983 
81 2048 
88 2204 

85 2058 
93 2253 

103 2538 
105 2592 
70 7 12700 

42 1 
654 
930 
980 

1072 

685 
826 
93 1 
968 

1033 

926 
1015 
1168 
1196 
3344 

2.0 x 10-2 - 

3.0 x 
3.0 x lo-’  - 
4.0 x lo-’ - 
4.0 x lo-* 95 
4.0 x 10-3 - 
2.0 x 10-3 - 
2.0 x 1 0 - 3  - 
2.0 x 10- - 
2.0x 10-3 185 
4.0 x 10-4 
4.0 x 10-4 - 
7.0 x 10-4 
8.0 x 10-4 - 
9.0 x 10-4 I753 

- 

- 

sign. Because the size of entries is large, since they contain terms (Axi)-’ and Axi can be very 
small, it happens that during the iteration process entries frequently change their value from large 
positive to large negative or vice versa. No doubt this severely hinders the convergence of the 
iterative Newton process and, as we have observed, will often lead to convergence failures and 
requests for a Jacobian update. This explains why the march to steady state in the case of 100 
points is so troublesome. However, we stipulate that also with 25 and 50 points the march to 
steady state eventually becomes troublesome. It all depends on the size of the computed velocities 
q and is a matter of accuracy. With fewer points the computed velocities arrive in the troublesome 
regime for larger values of time when the system has become sufficiently stationary or, in other 
words, when the numerical velocities have become sufficiently small. Ironically, with 100 points 
the accuracy is sufficiently good to have the troublesome Newton convergence behaviour already 
for 200 < t < 500. 

We emphasize that the troublesome march to steady state originates from the Jacobian matrix 
needed in the iterative solution process and not from the integration formula itself. In fact, we 
have also run the problem with 141 replaced by , /(q2 + E ) ,  with E =  l O P ,  which completely 
remedies the situation, and a normal march to steady state is observed with very large step sizes 
towards the end value T, even up to T= 10l2. When the modelling does not allow this slight 
modification in the dispersion flux expression, an alternative remedy is to change the expression 
for 141 only in the entries of the Jacobian so as to avoid the sign changes. This involves little 
change in the Jacobian matrix and thus should not interfere significantly with the convergence 
behaviour of the iterative Newton method. 

4.3. Example III 

This example is derived from Example I by changing the salt concentration value w(0, t) = 1 to 
the step function 

1, O<t<0*75, 
0, 0 7 5  < t < 5.0. 

w(0, t )  = 
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Figure 3. Example 111: grid lines and salt concentration profiles at t =0.1, 0.5, 1.0, 20 and 5.0 for N,= 100 

Table IV. Example 111: integration costs at t =  1.0,2.0 and 5.0 for N ,  = 100 (see Table I1 for 
corresponding data at t = 0 1 and 0.5) 

N2 t STEPS JACS RENDS NITER CPU (s) 

100 1 .o 554 159 3134 1624 - 
2.0 819 262 6008 251 1 - 

5.0 1009 308 1259 3154 1146 

Thus for O < t d O 7 5  the two solutions are equal and at t=0.75 the step function generates a 
second front at x = 0, resulting in a block-form concentration profile. The block then travels to the 
right boundary and eventually the system runs into steady state with uniform zero salt concentra- 
tion. For the moving grid method this solution is more difficult to compute, since now two 
travelling fronts are present which appear and disappear at  different values oft. Hence, instead of 
two times the solution shape is drastically changed four times and the automatic grid movement 
and step size control should be able to cope with these drastic changes. For example, without 
neglecting the already existing first front, at t=0.75 the method must rapidly cluster grid points at 
the left boundary and decrease the time step to timely see the onset of the second front. Therefore, 
for the same accuracy, roughly twice the number of grid points and time-stepping effort will be 
needed as for Example I. 

We have used N ,  =25,50 and 100. Apparently, 25 points is not enough, but with 50 points the 
solution is already fairly accurate. A comparison for 50 and 100 points reveals only minor 
differences at the top of the computed salt block profile and we may conclude that the results are 
very satisfactory. The grid line plot in Figure 3 for N ,  = 100 nicely reveals the onset of the second 
front where very small time steps have been taken, similarly as at t =O (see Figure 1). The arrival 
of the two fronts at  the right boundary can also be clearly recovered from the plot, like the change 
to the uniform steady state grid. Note that here also small time steps are needed to accurately 
simulate the rapid solution change. The integration costs given in Table IV indeed show that the 
time-stepping effort is about twice as large as for Example I. As anticipated, comparison of 
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Tables I1 and IV reveals that it is mainly the drastic changes in the solution shape that determine 
the costs. Once the front is in existence, the time stepping is done very efficiently, as can be 
deduced from the number of Jacobian updates listed in Table I1 at t = 0.1 and 1.0. 

5. CONCLUDING REMARKS 

We have applied a moving grid, finite difference method to a particular class of one-space- 
dimensional fluid flow/salt transport problems with rapid spatial and temporal transitions in the 
salt concentration. The success of this method rests on two sorts of automatic grid adaptation. 
The first adaptation is connected with the space grid and serves to cope with the rapid spatial 
transitions. These are dealt with by integrating on grids that spatially equidistribute a relevant 
measure of the error. The equidistribution is realized in a dynamic Lagrangian approach where 
the grid is adapted continuously in time. This feature is important since it makes it possible to 
follow steep travelling fronts accurately and efficiently. The second adaptation serves to cope with 
rapid temporal transitions and is just the use of variable step sizes in the numerical integration. 
Variable step sizes are a prerequisite when drastic solution changes have to be dealt with, such as 
the onset of a steep front. The numerical integration has been performed with the LSODI-based 
stiff ODE solver of the SPRINT package.” 

Our findings reported in Section 4 have convincingly shown that the method is very well suited 
to solve 1D brine transport models involving high concentration gradients. Because we have 
worked with an a priori chosen set of numerical control parameters, it is most likely that tuning of 
these parameters will further enhance the efficiency and accuracy for the specific model at hand. 
Since the method was originally developed for general one-space-dimensional PDE systems,6* ’ it 
is also an excellent candidate for solving fluid Aow/solute transport problems from other fields of 
application. In this connection it is worth emphasizing the user-friendly computational environ- 
ment of the SPRINT package and the moving grid interface MGI,” which together provide a 
numerical software tool that requires a minimum of programming effort. 
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