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Abstract Saturation overshoot and pressure overshoot are studied by incorporating dynamic
capillary pressure, capillary pressure hysteresis and hysteretic dynamic coefficient with a
traditional fractional flow equation in one-dimensional space. Using the method of lines, the
discretizations are constructed by applying the Castillo–Grone’s mimetic operators in the
space direction and a semi-implicit integrator in the time direction. Convergence tests and
conservation properties of the schemes are presented. Computed profiles capture both the
saturation overshoot and pressure overshoot phenomena. Comparisons between numerical
results and experiments illustrate the effectiveness and different features of the models.

Keywords Castillo–Grone’s mimetic operators · Saturation overshoot · Pressure overshoot ·
Dynamic capillary pressure · Play-type hysteresis

1 Introduction

Water infiltrating into initially dry sandy porous media has been shown to produce satu-
ration overshoot and pressure overshoot in Selker et al. (1992), Shiozawa and Fujimaki
(2004), DiCarlo (2004, 2007). Eliassi andGlass (2001) and Egorov et al. (2003) have demon-
strated that the traditional Richards equation is unable to describe saturation overshoot. To
describe the non-monotonic behaviour, various extensions to the Richards equation have been
investigated. Eliassi and Glass (2001) studied three additional forms referred to as hypod-
iffusive form, hyperbolic form and mixed form; saturation overshoot is obtained by using
the hypodiffusive form in Eliassi and Glass (2003). DiCarlo et al. (2008) studied a non-
monotonic capillary pressure–saturation relationship and a second-order hyperbolic term,
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but they mentioned these extensions need a regularization term to produce a unique solution.
Cueto-Felgueroso and Juanes (2009) explained the formation of gravity fingers during water
infiltration in soil by introducing a fourth-order term to Richards equation. The tip and tail
saturations after their phase model have good agreement with the experiments in DiCarlo
(2004). Nieber (2003) obtained non-monotonic saturation profiles by supplementing the
Richards equation with a non-equilibrium capillary pressure–saturation relationship, as well
as including hysteretic effects. Later, Chapwanya and Stockie (2010) studied gravity-driven
fingering instabilities based on the work of Nieber (2003), and their results demonstrate that
the non-equilibrium Richards equation is capable of reproducing realistic fingering flows for
a wide range of physically relevant parameters.

Besides extensions to theRichards equation, other approaches to the characterization of the
saturation overshoot have also been proposed, such as the generalized theory by introducing
percolating and non-percolating fluid phases into the traditional mathematical model (Hilfer
and Besserer 2000; Hilfer et al. 2012; Doster et al. 2010), fractional flow approach (DiCarlo
et al. 2012) and moment analysis (Xiong et al. 2012).

Among all the proposed theories and models, the dynamic (or non-equilibrium) capil-
lary pressure relationship proposed by Stauffer (1978), Hassanizadeh and Gray (1993) and
Kalaydjian et al. (1992) has received much attention. Results on travelling wave solutions,
global existence, phase plane analysis and uniqueness of weak solutions are given in Cuesta
et al. (2000), Van Duijn et al. (2007, 2013), Mikelić (2010), Spayd and Shearer (2011) and
Cao and Pop (2015). In order to provide accurate simulations, several numerical methods
have been proposed in the literature, including a finite difference method with minmod slope
limiter in Van Duijn et al. (2007), a cell-centred finite difference method and a locally con-
servative Eulerian–Lagrangian method in Peszynska and Yi (2008), Godunov-type staggered
central schemes in Wang and Kao (2013), two semi-implicit schemes based on equivalent
reformulations in Fan and Pop (2013), an adaptive moving mesh method in Zegeling (2015)
and the fast explicit operator splitting method in Kao et al. (2015).

In the previous studies of saturation overshoot, the dynamic capillary pressure model
with a constant dynamic coefficient usually brought oscillations behind the drainage front
(DiCarlo 2005; Sander et al. 2008; van Duijn et al. 2013). The hysteretic non-equilibrium
model proposed in Beliaev and Hassanizadeh (2001) postulates that the dynamic capillary
effects are significant only outside themainhysteresis loop. Following this idea,Nieber (2003)
adopted a saturation- and pressure-dependent dynamic coefficient τ = τ 0s P

′
w(s)(p0 − p)γ+.

In this treatment, the Mualem hysteresis model was restricted only to the two-stage wetting–
drainage process: trajectories for the wetting stage were located within Hw (domain above
the main wetting curve), while trajectories for the drainage stage were limited to H0 (main
hysteresis loop region). In the wetting stage, τ 0s = τw , and in the drainage stage, τ 0s = 0 (in
the numerical simulation, the value was a small constant = 10−3). Recently, the hysteretic
dynamic capillary pressure effect has been reported in Sakaki et al. (2010). Mirzaei and
Das (2013) show that the dynamic effect in the relationship between capillary pressure and
saturation is hysteretic in nature. In this contribution, we consider the hysteresis effects
in capillary pressure and study the saturation overshoot and pressure overshoot by adding
dynamic capillary pressure, capillary pressure hysteresis and hysteretic dynamic coefficient
to a traditional fractional flow equation.

Two-phase flow models in porous media usually consist of coupled, nonlinear partial
differential equations. Many reliable discretizations have been proposed for the Richards
equation, for instance, the Galerkin finite elements in Arbogast et al. (1993), the multipoint
flux approximation in Klausen et al. (2008). The space and time discretizations usually lead
to a large system of nonlinear equations, which makes the numerical simulation of two-
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phase flow a challenging task. Some popular methods used for the Richards equation are the
Newton method (Radu et al. 2006), Picard method (Zarba et al. 1990) or L-scheme (Radu
et al. 2015); for an extensive review, we refer to List and Radu (2016). The appearance of
the dynamic capillary pressure term in the two-phase flow model adds additional difficulty
to the numerical treatment. In Sander et al. (2008), a reformulation of the non-equilibrium
two-phase flow equation, which consists of an elliptic equation and an ODE, is shown to
be effective for numerical simulations, Fan and Pop (2013) also presented a reliable and
efficient semi-implicit scheme for a similar form. In this paper, we present our schemes
based on this reformulation. Because of the conservation property and easy implementation
of the Castillo–Grone’s mimetic (CGM) operators, we apply the mimetic finite difference
method to the elliptic equation in the space direction and then integrate the system in the
time direction with the implicit trapezoidal rule.

The rest of the paper is organized as follows. In Sect. 2, we first derive the traditional
equation for one-dimensional two-phase flow, and then we present the extended models in
Sects. 2.1, 2.2 and 2.3 by incorporating the dynamic capillary pressure term and hysteresis
effects. Section 3.1 is devoted to presenting the CGM operators. In Sect. 3.2, we apply
the CGM operators in the space direction and an implicit trapezoidal integrator in the time
direction to discretize the system. In Sect. 4, numerical experiments are carried out to show the
effectiveness and reliability of the extended models. Section 5 summarizes the conclusions.

2 Mathematical Models

Two-phase flow in porous media can be characterized by the saturation and pressure in each
phase. The saturation in each phase is defined as the fraction of the pore volume occupied
by the phase and is denoted as Sα , where α = w, n is an index for wetting and non-wetting
phases. For the derivation of the fractional flow equation, we refer to Hilfer and Steinle
(2014). Let the gravity act in the positive x-direction; for each phase, the mass conservation
law is represented by the equation

∂ (φραSα)

∂t
+ ∂

∂x
(ραvα) = ραFα, α = n, w, (1)

where φ is the porosity of the porous medium, ρα, vα and Fα are the density, volumetric
velocity and source of each phase.

In Darcy scale, the balance of momentum of each phase is given by the Darcy’s law

vα = −krαK

μα

∂

∂x
(pα − ραgx)

= −λα

(
∂pα

∂x
− ραg

)
, α = n, w, (2)

where K is the intrinsic permeability of the porous medium, g is the gravitational acceler-
ation constant, krα, μα, λα = krαK

μα
and pα are the relative permeability function, viscosity,

mobility and pressure of phase α, respectively.
For the two-phase system, the following constitutive relation holds:

Sw + Sn = 1. (3)

Then krn and λn can be written as functions of Sw . The total velocity is given by

vT = vn + vw. (4)
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Using Eqs. (2), (3) and (4), the velocity of the wetting phase can be expressed in terms of the
phase mobilities, total velocity and phases pressure difference as

vw = vT
λw

λT

[
1 + λn

vT

(
∂

∂x
(pn − pw) + (ρw − ρn)g

)]
. (5)

Assuming φ and temperature are constant, the phases are incompressible, by substituting Eq.
(5) into Eq. (1) for the wetting phase, we obtain a nonlinear equation for the wetting phase

φ
∂Sw

∂t
+ ∂

∂x

[
vT

λw

λT

[
1 + λn

vT

(
∂

∂x
(pn − pw) + (ρw − ρn)g

)]]
= Fw. (6)

In DiCarlo (2004), the experiments were conducted in thin tubes, and water was injected
into the tubes with different flux rates. Since the medium is homogeneous and the initial
saturation is constant, the experiments are viewed as one-dimensional. Reminding that our
aim is to simulate these experiments, we set the source term Fw = 0 and consider a flux
boundary condition at xL and a Dirichlet boundary condition at xR. Let f (Sw) = λw

λw+λn
=

λw

λT
, then we have

φ
∂Sw

∂t
+ ∂

∂x

[
q f (Sw) + λn(Sw) f (Sw)

(
∂

∂x
(pn − pw) + (ρw − ρn)g

)]
= 0, (7)

with boundary conditions
{

vw = q f (Sw) + λn(Sw) f (Sw)
[

∂
∂x (pn − pw) + (ρw − ρn)g

] = q, at xL,

Sw = SRw, at xR,
(8)

where q is the flux value used in DiCarlo (2004, 2007) and SRw is the initial water saturation
at xR.

Integrating Eq. (7) over [xL, xR] × [0, T ], we obtain
∫ T

0

∫ xR

xL

[
φ

∂Sw

∂t
+ ∂vw

∂x

]
dxdt =

∫ xR

xL
φSw(x, T )dx −

∫ xR

xL
φSw(x, 0)dx + [vw(Sw(xR))

− vw((Sw(xL))]T
=

∫ xR

xL
φSw(x, T )dx −

∫ xR

xL
φSw(x, 0)dx+[

vw

(
SRw

) − q
]
T

= 0, (9)

In Sect. 3, wewill test the conservation property of the numerical schemes using this formula.

2.1 Dynamic Capillary Pressure Model

Under equilibrium conditions, traditional models suggest the difference in phases pressure
is equal to the capillary pressure. In the microscale, the capillary pressure is defined as the
interfacial tension between two phases, and in Darcy scale, it is usually given as a function
of the wetting phase saturation:

pn − pw = pc = Pc(Sw). (10)

For non-equilibrium conditions, Stauffer (1978), Hassanizadeh and Gray (1990) and
Kalaydjian et al. (1992) proposed that the phases pressure difference can be written as a
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Fig. 1 Schematic plots of
capillary pressure and hysteresis
loops as functions of water
saturation. Cyan and magenta
lines are the equilibrium
imbibition and drainage capillary
pressure obtained by the
Brooks–Corey model as shown in
Table 2; blue, dashed blue and
dash-dotted blue lines illustrate
an imbibition hysteresis curve, a
drainage hysteresis curve and a
play-type hysteresis curve
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function of the capillary pressure under equilibrium condition minus the product of the sat-
uration rate with a dynamic coefficient τ (Pa s):

pn − pw = Pc(Sw) − τ
∂Sw

∂t
. (11)

The parameter τ is also known as damping coefficient andmay still be a function of saturation
(Joekar-Niasar et al. 2010). Adding the dynamic capillary pressure term to Eq. (7), we obtain

φ
∂Sw

∂t
+ ∂

∂x

[
q f (Sw) + λn(Sw) f (Sw)

(
∂

∂x

(
Pc(Sw) − τ

∂Sw

∂t

)
+ (ρw − ρn)g

)]
= 0.

(12)

In the following, we mark this model as Model 1.

2.2 Play-Type Capillary Pressure Hysteresis Model

Many studies, Morrow et al. (1965) and Jerauld and Salter (1990), in recent decades have
shown non-uniqueness in the relationship between capillary pressure and saturation, which
can depend both on the history of flow displacement and on the rate of change of saturation.
The dependency of pc–Sw on the history of flow is known as capillary pressure hysteresis.
Displacement of flowdifferentiates between drainage and imbibition. The process of drainage
describes when the non-wetting phase displaces the wetting phase. Vice versa, imbibition
describes the process when the wetting phase displaces the non-wetting phase. In general,
for a given saturation Sw, pc can lie anywhere within the primary drainage curve Pdr

c and
the primary imbibition curve P im

c , depending on the saturation history. Some typical plots
of hysteretic capillary pressure curves are presented in Fig. 1. In Parlange (1976), Beliaev
and Hassanizadeh (2001) and Brokate et al. (2012), different kinds of hysteresis models have
been discussed for two-phase flows; in our work, we adopt the play-type hysteresis model
presented in Brokate et al. (2012).

Assume pc depends only on Sw and this relationship is described by the hysteresis operator

Physt
c : Sw(·) → pc(·). (13)
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Note that Physt
c operates on Sw as a function of time. In the drainage process, when Sw

decreases, pc follows the drainage pressure–saturation curve Pdr
c (Sw). In the imbibition

process, when Sw increases, pc follows the imbibition pressure–saturation curve P im
c (Sw).

In this hysteresis model, between the drainage and imbibition curves, pc and Sw evolve as

∂pc
∂t

= −β
∂Sw

∂t
, (14)

where β is the opposite slope of the hysteresis curve with dimension (Pa). β is usually chosen
to be very large, whichmeans the hysteresis curve is very steep and the hysteresis pressure can
move quickly from one equilibrium curve to another when the saturation direction changes.
This hysteretic capillary pressure curve is illustrated in Fig. 1 (dashed-dotted blue line).

Since Physt
c acts on the history of Sw, it is not possible to compute pc at a given time from

Sw at that time alone. Consider the system after time discretization, denote pc and Sw from
the previous time step as pn−1

c and Sn−1
w , respectively. The discrete form of Eq. (14) is

pnc = pn−1
c − β

(
Snw − Sn−1

w

)
. (15)

The algorithm for computing pc is as follows

1. Set pnc = pn−1
c − β(Snw − Sn−1

w ).
2. If pnc < P im

c (Snw), set pnc = P im
c (Snw).

3. If pnc > Pdr
c (Snw), set pnc = Pdr

c (Snw).

In the numerical simulations, we denote the above algorithm as pnc = Physt
c (Snw).

Combining capillary pressure hysteresis with the dynamic capillary pressure (11), we
obtain

pn − pw = Physt
c (Sw) − τ

∂Sw

∂t
. (16)

Substituting Eq. (16) into Eq. (7), we get a model with dynamic capillary pressure effect and
play-type capillary pressure hysteresis; in the following, this model is marked as Model 2.

2.3 Hysteretic Dynamic Capillary Pressure Model with Play-Type Capillary
Pressure Hysteresis

Sakaki et al. (2010) conducted a series of experiments to measure values of the dynamic
capillary coefficient τ for a porous medium. Their result suggests that τ is hysteretic. Mirzaei
and Das (2013) investigated the hysteretic behaviour between τ and Sw . The experiments
demonstrate that the value of τ for imbibition is generally larger as compared to the τ value
for drainage at the same saturation. Thus, it is reasonable to introduce hysteresis in the τ–
Sw relationship. We assume in the imbibition process τ = τ im; in the hysteresis process,
τ decreases from τ im to τ dr; and at the tail, the dynamic coefficient is τ dr. To the best of
our knowledge, the ratio τ dr/τ im has not been investigated in the literature. In this work, we
follow Van Duijn et al. (2007) to show the influence of τ by using the travelling ansatz.

Equation (12) can be rewritten as

∂Sw

∂t
+ ∂F(Sw)

∂x
= − ∂

∂x

[
H(Sw)

∂

∂x

(
Pc(Sw) − τ

∂Sw

∂t

)]
, (17)

where the flux F(Sw) and the capillary-induced diffusion (Cuesta et al. 2006) H(Sw) are
given by

F(Sw) = 1

φ
f (Sw) [vT + λn(Sw)(ρw − ρn)g] , H(Sw) = 1

φ
λn(Sw) f (Sw). (18)
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In order to find a travelling wave solution for Eq. (17), we introduce the new variable
η = x−st . Substituting Sw(η) into (17) results in a third-order ordinary differential equation
(ODE)

− sS′
w + [F(Sw)]′ = − [

H(Sw)P ′
c(Sw)S′

w

]′ − sτ [H(Sw)S′′
w]′, (19)

where prime denotes differentiation with respect to η. This equation is to be solved subject
to the boundary conditions at infinities,

Sw(−∞) = SLw, Sw(∞) = SRw, SLw, SRw ∈ [0, 1]. (20)

Integrating Eq. (17) over (η,∞) and assuming
[
H(Sw)(P ′

c(Sw)S′
w − sτ S′′

w)
]
(±∞) = 0, (21)

yields the second-order ODE:{ − s(Sw − SRw) + [
F(Sw) − F(SRw)

] = −H(Sw)P ′
c(Sw)S′

w − sτH(Sw)S′′
w,

Sw(−∞) = SLw, Sw(∞) = SRw,
(22)

with s determined by the Rankine–Hugoniot condition

s = F(SLw) − F(SRw)

SLw − SRw
. (23)

When gravity is included into the flux function F(Sw), with different values of vT , F(Sw)

may be non-monotone. For simplicity, we only consider (SLw, SRw) pairs that satisfy s > 0.
Next, we write Eq. (22) as a first-order system of ODEs:

⎧⎨
⎩

S′
w = v,

v′ = 1

sτH(Sw)

[
s(Sw − SRw) − [F(Sw) − F(SRw)] − H(Sw)P ′

c(Sw)v
]
.

(24)

Let Sα
w be the unique root of the equation

F ′(Sw) = F(Sw) − F(S0w)

Sw − S0w
, (25)

where S0w is the initial water saturation ahead of the wetting front.
The Jacobian of (24) reads

A =
[
0 1
s−F ′(Sw)
sτH(Sw)

− H(Sw)P ′
c(Sw)

sτH(Sw)

]
(26)

and has eigenvalues

λ± = 1

2sτ

[
−P ′

c(Sw) ±
√(

P ′
c(Sw)

)2 − 4sτ
F ′(Sw) − s)

H(Sw)

]
. (27)

For the casewhere saturation plateau appears, consider a travellingwave connecting SLw = SBw
(equilibrium boundary saturation) and SRw = S̄Pw (plateau saturation) with wave speed

s = F(SLw) − F(SRw)

SLw − SRw
. (28)
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Then we can prove (SBw, 0) is an equilibrium of system (24). Using (27), if τ > τs =
H(SLw)P ′

c(S
L
w)2

4s(F ′(SLw)−s)
, the equilibrium (SBw, 0) is a spiral, oscillation will appear near SLw = SBw.

When only saturation overshoot appears, consider a travelling wave connecting SLw = SBw
and SRw = S0w, if τ > τs = H(SLw)P ′

c(S
L
w)2

4s(F ′(SLw)−s)
, the equilibrium (SBw, 0) is a spiral.

From the analysis above, we can conclude that when τ < τs , saturation oscillation will
not appear at the drainage front, which means ∂Sw/∂t → 0−. Therefore, the phase pressure
difference pn − pw will tend to Pdr

c at equilibrium.
Denoting the hysteretic dynamic coefficient as τ hyst, since τ hyst may possibly be due to

the hysteresis in the retention curve (Sakaki et al. 2010), for simplicity, we introduce τ hyst

as the linear interpolation between τ dr and τ im by utilizing the capillary pressure hysteresis,

τ hyst = (τ im − τ dr)

[
Physt
c (Sw) − 1

2

(
P im
c (Sw) + Pdr

c (Sw)
)

P im
c (Sw) − Pdr

c (Sw)
+ 1

2

]
+ τ dr. (29)

Substituting Eqs. (16) and (29) into Eq. (7) will result in a model with hysteretic dynamic
capillary pressure and capillary pressure hysteresis. This model is marked as Model 3.

3 Numerical Scheme

In this section, we present the numerical scheme based on a reformulation of the non-
equilibrium equation; the method of lines is then applied to this reformulation. Denoting
p = pn − pw , Eq. (12) can be rewritten as

⎧⎪⎪⎨
⎪⎪⎩

φ
Pc(Sw) − p

τ
+ ∂

∂x

[
q f (Sw) + λn(Sw) f (Sw)

(
∂p

∂x
+ (ρw − ρn)g

)]
= 0,

∂Sw

∂t
= Pc(Sw) − p

τ
.

(30)

SinceModel 2 andModel 3 are incorporatedwith the capillary pressure hysteresis, we replace
Pc(Sw) in Eq. (30) by Physt

c (Sw)when solving these two models and replace τ by τ hyst when
solving Model 3.

3.1 Castillo–Grone’s Mimetic Operators

To discretize Eq. (30) in the space direction, we adopt the mimetic finite difference method
which satisfies the discrete version of continuum conservation law. Castillo andGrone (2003)
developed a set of mimetic operators knows as Castillo–Grone’s mimetic (CGM) operators.
CGM operators have been used in many fields, such as seismic studies (Rojas et al. 2008),
electrodynamics (Runyan 2011) and image processing (Bazan et al. 2011). Numerical results
in these fields validate the high efficiency and reliability of the CGM operators.

The main features of CGM operators are that they preserve symmetry properties of the
continuum and have overall high-order accuracy. The CGM operators can be implemented
as efficient as the standard finite difference schemes. Here, we briefly describe the CGM
operators in one dimension as applied in this work. The CGM 2-D operators can be obtained
by the Kronecker products of block matrices. For more details, see Castillo and Miranda
(2013) and references therein.
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In the one-dimensional situation, the Green–Gauss–Stokes theorem reads

∫ xR

xL

(
f
∂v

∂x
+ ∂ f

∂x
v

)
dx = f (xR)v(xR) − f (xL)v(xL), (31)

where f and v are two smooth real-valued functions defined in interval Ω = [xL, xR]. Let
L = xR−xL, and the step size�x = L/N , thenΩ can be partitioned into N equal-sized cells
[xi , xi+1], where 0 ≤ i ≤ N − 1. The cell centres can be indexed as xi+1/2 = 1

2 (xi + xi+1)

for 0 ≤ i ≤ N − 1. The cell nodes xi and cell centres xi+1/2 build up the uniform staggered
grid. We discretize v at the cell nodes:

v̄ = [
v(x0), v(x1), . . . , v(xN−1), v(xN )

]T
, (32)

and f at the cell centres and the boundary nodes:

f̂ = [
f (x0), f (x1/2), . . . , f (xN−1/2), f (xN )

]T
. (33)

Let D̂(N+2)×(N+1) denote the CGM divergence operator andG(N+1)×(N+2) denote the CGM
gradient operator, then the discrete version of the conservation law (31) reads

〈D̂v̄, f̂ 〉Q + 〈v̄,G f̂ 〉P = 〈B̂v̄, f̂ 〉I , (34)

where 〈x, y〉A = yTAx is the inner product, I is the (N + 2) × (N + 2) identity matrix, and
Q and P are the weight matrices for D̂ and G, respectively. The matrix B̂ = QD̂ + GTP
embodies the global conservation requirement for the discrete conservation law and is called
the boundary operator. Castillo and Yasuda (2005) presented the second-order divergence
mimetic operator as

D̂ =
⎡
⎣ 0 . . . 0

D
0 . . . 0

⎤
⎦ ∈ R(N+2)×(N+1), (35)

where

D = 1

�x

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 . . . . . . 0

0 −1 1 0 . . .
...

0
. . .

. . .
. . .

. . .
...

...
. . . 0 −1 1 0

0 . . . . . . 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ RN×(N+1). (36)

For this second-order mimetic divergence matrix D̂, the weights matrix Q is the (N + 2) ×
(N + 2) identity matrix. The second-order CGM gradient operator reads as

G = 1

�x

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−8/3 3 −1/3 0 . . . 0

0 −1 1 0 . . .
...

0
. . .

. . .
. . .

. . .
...

...
. . . 0 −1 1 0

0 . . . 0 1/3 −3 8/3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R(N+1)×(N+2), (37)
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with weight matrix

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3/8 0 . . . . . . . . . . . . 0

0 9/8
. . .

...
...

. . . 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1

. . .
...

...
. . . 9/8 0

0 . . . . . . . . . . . . 0 3/8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R(N+1)×(N+1). (38)

Applying the discrete conservation law (34) withmatrices D andG, the boundary operator
B̂ can be written as

B̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 . . . . . . 0 0 0
1/8 −1/8 0 . . . . . . 0 0 0
−1/8 1/8 0 . . . . . . 0 0 0

0 0 0
. . . 0 0 0

...
...

...
. . .

. . .
...

...
...

0 0 0
. . . 0 0 0

0 0 0 . . . . . . 0 −1/8 1/8
0 0 0 . . . . . . 0 1/8 −1/8
0 0 0 . . . . . . 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R(N+2)×(N+1). (39)

3.2 Mimetic Discretizations for the Two-Phase Flow Equations

Using the uniform staggered grid presented in Sect. 3.1, we discretize Sw and p at the centres
as S̄w = [Sw0, Sw 1

2
, . . . , S

w N−1
2

, SwN ] and p̄ = [p0, p 1
2
, . . . , p N−1

2
, pN ]. Then, we use

linear interpolation to get Sw at the nodes

Ŝwi = 1

2

(
Swi− 1

2
+ Swi+ 1

2

)
, i = 1, · · · , N − 1, (40)

At the boundary Ŝw0 = Sw0, ŜwN = SwN .
Introducing coefficients matrix K ∈ R(N+1)×(N+1) with zero non-diagonal elements, the

diagonal elements are given by

Kii = λn(Ŝwi−1) f (Ŝwi−1), i = 1, 2 . . . , N + 1. (41)

In the numerical simulations, since fully implicit time discretizations allowing large time
steps are preferred for solving long-time scale problems, thusweapply the implicit trapezoidal
integration to (30) in the time direction. Discretizing (30) and boundary condition (8) with
the CGM operators in the space direction, we obtain

(φ Î − τ Î D̂KG + K11BG + A) p̄n+1 = φ Î Pc
(
S̄n+1
w

)
+ τ D̂

[
q f

(
Ŝn+1
w

)
+ λn

(
Ŝn+1
w

)
f
(
Ŝn+1
w

)
(ρw − ρn) g

]
+ b̄

(
S̄n+1
w

)
,

(42)
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and

S̄n+1
w = S̄nw + �t

2

[
Pc(S̄nw) − p̄n)

τ
+ Pc

(
S̄n+1
w

) − p̄n+1

τ

]
. (43)

In (42), Î is a (N + 2) × (N + 2)-dimensional matrix with Î11 = 0, ÎN+2,N+2 = 0, Îi i =
1, for i = 2, 3, . . . , N + 1, the matrices A, B and vector b(S̄n+1

w ) represent the boundary
conditions. As a result of the flux boundary condition at xL and the Dirichlet boundary
condition at xR, the only nonzero element in A is AN+2,N+2 = 1, and B differs from B̂ in
the last three rows,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 . . . . . . 0 0 0
1/8 −1/8 0 . . . . . . 0 0 0
−1/8 1/8 0 . . . . . . 0 0 0

0 0 0
. . . 0 0 0

...
...

...
. . .

. . .
...

...
...

0 0 0
. . . 0 0 0

0 0 0 . . . . . . 0 0 0
0 0 0 . . . . . . 0 0 0
0 0 0 . . . . . . 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R(N+2)×(N+1), (44)

The (N + 2) × 1 column vector b̄(S̄n+1
w ) reads

b
(
S̄n+1
w

) =

⎡
⎢⎢⎢⎢⎢⎢⎣

q − q f
(
Sn+1
w0

)
− λn

(
Sn+1
w0

)
f
(
Sn+1
w0

)
(ρw − ρn)g

0
...

0
Pc(SRw)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (45)

In order to solve (42) and (43), we apply the iteration method. By introducing the super-
script l as an iteration counter, the algorithm for each time step is as follows:

1. Set S̄n+1,0
w = S̄nw, p̄n+1,0 = p̄n, Pc(S̄n+1,0

w ) = Pc(S̄nw) [or Physt
c (S̄n+1,0

w ) = Physt
c (S̄nw)],

l = 0.
2. Update S̄n+1,l+1

w = S̄nw + �t
2

[
Pc(S̄nw)−pn)

τ
+ Pc(S̄

n+1,l
w )− p̄n+1,l

τ

]
, solve (42) for p̄n+1,l+1,

and update Pc(S̄n+1,l+1
w ) [or Physt

c (S̄n+1,l+1
w )].

3. l = l + 1.
4. Repeat steps 2 and 3 until |S̄n+1,l+1

w − S̄n+1,l
w | < tol.

5. Set S̄n+1
w = S̄n+1,l+1

w , pn+1 = pn+1,l+1.

In step 2, Eq. (42) is a linear system in p̄n+1 which can be solved by a linear solver; in this
work, we adopt the built-in backslash operator of MATLAB (The Mathworks, Inc. 2014) to
solve p̄n+1.

Remark The application of MFD to partial differential equations constitutes an active filed
of research (Lipnikov et al. 2014). Formal analysis of MFD for the Richards equation can be
achieved by combining the convergence results in Brezzi et al. (2005), with the equivalence
between MFD and multipoint flux approximation (MPFA) established in Stephansen (2012)
and the convergence proof ofMPFA for Richards equation in Klausen et al. (2008). However,
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Table 1 Physical parameters for 20/30 sand

Sand κ [m s−1] φ (–) Drainage Imbibition

Swr (–) λ (–) pd (Pa) Swr (–) λ (–) pd (Pa)

20/30 2.5e−03 0.35 0 5.57 850 0 5 490

The residual saturations in DiCarlo (2004) and DiCarlo et al. (2008) are different, so we simply set Swr = 0

Table 2 Constants and Brooks–Corey models

Density (kg m−3) ρw = 998.21 ρn = 1.2754

Viscosity (kg m−1s−1) μw = 1.002e−03 μn = 1.82e−05

Mobility (m s kg−1) λw = Kkrw
μw

λn = Kkrn
μn

Constants g = 9.81 (m s−2) K = κμw
ρwg (m2)

Capillary pressure Relative permeability

Brooks–Corey model Se = Sw−Swr
1−Swr

krw = S
2+3λ

λ
e

pc = pd S
− 1

λ
e , for pc > pd krn = (1 − Se)2

(
1 − S

2+λ
λ

e
)

difficulties arise when establishing convergence for (30), because of the nonlinearity and the
reformulation. In Sect. 3, we present numerical results to demonstrate the convergence of the
method.

4 Numerical Experiments

DiCarlo (2004, 2007) presented snapshots of the saturation and capillary pressure profiles
for different fluxes in initially dry 20/30 sand. The physical parameters of the 20/30 sand
(DiCarlo 2004; Schroth et al. 1996) as well as the constants and Brooks–Corey models
(Brooks and Corey 1966) are listed in Tables 1 and 2. DiCarlo observed that for the highest
[q = 2.0e−3 (m s−1)) and lowest [q = 1.32e−07 (m s−1)] fluxes, the saturation profiles are
monotonicwith distance and no saturation overshoot is observed, while all of the intermediate
fluxes exhibit saturation overshoots. In this section, we will study the numerical behaviours
of the three models presented in Sect. 2.

In Eq. (7) when Sw = 0 or Sw = 1, the equation is degenerate. From Fig. 1 in DiCarlo
(2007), we get the initial capillary pressure p0c ≈ 1600(Pa); using theBrooks–Corey capillary
pressure model in Table 2, we can find for the imbibition process, when water saturation
Sw = 0.003, the Brooks–Corey capillary pressure pc(Sw) = 1566 (Pa). So in the numerical
simulations, we set SRw = 0.003 and Smax

w = 1 − 1.0e−03. The initial saturation is given by

Sw(x, 0) = SRw + (SLw − SRw)(1 − tanh(200x)), (46)

where SLw = 0.025 and the initial phases pressure difference is pn − pw = Pc(Sw(x, 0)). The
reason we set SLw > SRw is that, when SLw = 0.003, in Eq. (43) we have λn(0.003) f (0.003) ≈
6.7e-16, and then the boundary saturation obtained by solving (30) will exceed 1; when
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Table 3 Space accuracy test of schemes (42) and (43) at T = 100 (�t = 0.01)

N Model 1 Model 2 Model 3

L2 error L2 order L2 error L2 order L2 error L2 order

64 4.1726e−04 – 3.6657e−04 – 3.6661e−04 –

128 1.0224e−04 2.0289 7.9465−05 2.2057 7.9475e−05 2.2057

256 2.4289e−05 2.0736 1.7996e−05 2.1426 1.7998e−05 2.1427

512 4.8183e−06 2.3337 4.0298e−06 2.1589 4.0300e−06 2.1590

Table 4 Time accuracy test of schemes (42) and (43) at T = 100 (N = 256)

�t Model 1 Model 2 Model 3

L2 error L2 order L2 error L2 order L2 error L2 order

0.016 1.0078e−08 – 5.5162e−05 – 6.0156e−05 –

0.008 2.5009e−09 2.0107 2.5972e−05 1.0867 2.8378e−05 1.0839

0.004 5.9543e−10 2.0704 1.1182e−05 1.2158 1.2230e−05 1.2144

0.002 1.1908e−11 2.3219 3.7358e−06 1.5816 4.0881e−06 1.5809

Sw is big enough, for example SLw = 0.025, we have λn(0.025) f (0.025) ≈ 9.1e-13, the
boundary saturation will not exceed 1, see Fig. 4a. For the numerical simulations, SLw is small
enough and will not influence the behaviour of the models. Before we carry out the numerical
simulations, the parameters β and τ dr that appear in Eqs. (14) and (29) have to be decided.
Here we choose β = 1.0e05, and the ratio τ dr/τ im is set to be 0.2.

First, we test the accuracy of schemes (42) and (43). Since exact solutions of Eq. (12) are
not known, the numerical solutions onfinegrids are taken as reference solutions. For space and
time accuracy tests, the reference grids are N = 1024,�t = 0.01 and N = 512,�t = 0.001,
respectively. Setting SLw = 0.45, SRw = 0.3, q = 1.32e−04, τ = 4.0e03, fixing time or space
step size, the L2 errors and orders are obtained in Tables 3 and 4. Table 3 shows that in the
space direction, schemes (42) and (43) are second order when applying to different models,
and the L2 errors of the three models are consistent. However, as a result of the hysteresis
effects, in the time direction the L2 errors increase when schemes (42) and (43) are applied
to Model 2 and Model 3, and also the convergence rates drop from two to about one.

Setting SLw = 0.025, SRw = 0.003, q = 1.32e−04, τ = 4.0e03, the saturation andpressure
profiles obtained byModels 1, 2 and 3 are presented in Fig. 2. The imbibition fronts obtained
by the three models are similar, but the saturations and pressures at the plateaus and behind
drainage fronts are different. For Model 1, the value of the plateau saturation is constant
and behind the drainage front, oscillations appear and the phases pressure difference follows
the imbibition capillary pressure. For Model 2, the plateau saturations decrease a little from
the imbibition front to the drainage front and behind the drainage front, there is a slight
oscillation in the saturation profile and the phase pressure difference moves to the imbibition
capillary pressure. For Model 3, because of the hysteresis in the capillary pressure and the
dynamic coefficient, no oscillation appears in the saturation profile. As a result, the pressure
keeps constant and follows the drainage capillary pressure. The phases pressure difference–
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Fig. 2 Numerical results of Models 1, 2, 3 with q = 1.32e−04, τ = 4.0e03; the volumetric saturation
is defined by φSw . a–c Black, blue, dashed blue, cyan and magenta lines denote experimental saturation,
numerical saturation, numerical capillary pressure, equilibrium imbibition and drainage pressure, respectively.
d Cyan and magenta lines are equilibrium imbibition and drainage capillary pressure curves obtained by
Brooks–Corey model. Red cross, green line and dashed blue line denote phases pressure difference–saturation
relationship obtained by Models 1, 2 and 3, respectively. a Model 1, t = 425 (s), b Model 2, t = 460 (s), c
Model 3, t = 460 (s), d phases pressure difference–saturation, t = 460 (s)

saturation curves are presented in Fig. 2d. The result obtained by Model 3 shows similar
behaviour as the measured data in Fig. 6 in DiCarlo (2007).

Figure 3 shows that schemes (42) and (43) preserve Eq. (9) with high accuracy for all
three models. The evolutions of saturation and pressure at the left boundary are presented in
Fig. 4. Figure 4a shows the saturation obtained by Model 1 drops to the tail saturation after it
reaches a high value, while the saturations of Model 2 and Model 3 keep the high values for
a while. This phenomenon can be explained by the capillary pressure hysteresis in Model 2
andModel 3 as is shown in Fig. 4b. From t = 0 to t ≈ 100, the hysteretic pressures in Model
2 and 3 increase, the pressure gradients keep the saturations stay at high values, when phases
pressure differences reach the equilibrium drainage pressure, the pressure gradients vanish,
and the saturations move to the asymptotic tail values. The pressure curves obtained by
Model 2 and Model 3 are also different. In Model 3, when pressure moves to the equilibrium
drainage pressure, the hysteretic dynamic coefficient τ hyst also decreases from τ im to τ dr

and thus keeps the saturation constant at the tail and the pressure stays at the equilibrium
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Fig. 3 Errors of Eq. (9) using
Models 1, 2 and 3 with q =
1.32e−04, τ = 4.0e03, N = 256
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Fig. 4 Saturation and phases pressure difference at left boundary, with q = 1.32e−04, τ = 4.0e03. a
Saturation at left boundary over time, b phases pressure difference at left boundary over time

drainage pressure. The evolutions of the boundary saturation and pressure of Model 3 have
good agreement with the observed and calculated profiles in Shiozawa and Fujimaki (2004).

Before we apply different fluxes q to the three models, we have to know the end times
for the simulations. In DiCarlo (2004), the end times for the experiments are not given,
but the inner diameter of the tube is given as d = 1.27e−02(m), then the total volume
of water injected into each tube can be calculated by Volume = φπ

( d
2

)2 ∑N−1
k=0 (xk+1 −

xk)
Sw(xk )+Sw(xk+1)

2 , where xk is the sample point in DiCarlo (2004). Thus, we can calculate
the end times using Tend = Volume

qπ(d/2)2
(s).

To the best of our knowledge, the τ values are not known for the 20/30 sand; thus, we
have to first try different values of τ and then find the best match with the experiments.
DiCarlo (2004) observed at the highest 2.0e−03 and lowest 1.32e−07 fluxes the saturation
profiles are monotonic with distance and no saturation overshoot is observed. In order to find
suitable values of τ for the highest and lowest fluxes, in Fig. 6a we plot τ as a function of
q using a log–log diagram. Realizing the near log–log relationship between τ and q , we set
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Table 5 Parameters for different fluxes

Volume of water (m−3) 1.26e−05 1.17e−05 6.85e−06 4.56e−06 2.06e−06 2.18e−06

q (m s−1) 2.0e−03 1.32e−03 1.32e−04 1.32e−05 1.32e−06 1.32e−07

τ(τ im) (Pa s) 40 1.0e02 4.0e03 9.0e04 4.0e05 1.0e06

τdr (Pa s) 8 20 800 1.8e04 8.0e04 2.0e05

τs – 163.4 328.5 4991 6.483e04 6.083e05

�t (s) 7.3e−04 1.0e−03 5.6e−03 3.2e−02 1.8e−01 1

Tend (s)
( Volume
qπ(d/2)2

)
49.7 70.0 409.7 2.727e03 1.2320e04 1.3037e05

Tend (s) (Model 1) 54.0 216.0 425.0 2.380e03 9.000e03 3.120e04

Tend (s) (Model 2) 54.0 216.0 460.0 2.660e03 1.000e04 3.120e04

Tend (s) (Model 3) 54.0 216.0 460.0 2.660e03 1.000e04 3.120e04

τ = 40 for q = 2.0e−03, τ = 2.0e06 for q = 1.32e−07. The number of nodes used in
space is N = 256, and the values of τ(τ im), τ dr, τs , time steps as well as the end times are
presented in Table 5. As can be seen, the end times for simulations are near to the calculated
times except when q = 1.32e−07, we will explain this later. For all three models, when
the flux q is 1.32e−03, the imbibition front moves quickly, while the change in hysteretic
capillary pressure is slow. In order to show the overshoot saturation phenomenon, we have
to enlarge the interval to [0, 1]. In Fig. 5, we compare the numerical solutions with the
experiments.

Figure 5a–c shows that all three models can obtain saturation overshoots for q =
1.32e−06, q = 1.32e−05, q = 1.32e−04, q = 1.32e−03. From Fig. 5a, we can see oscil-
lations behind the drainage fronts when q = 1.32e−06, q = 1.32e−05 and q = 1.32e−04,
while Fig. 5b only presents weaker oscillations for q = 1.32e−04 and 1.32e−05 and there
is no oscillation behind the drainage fronts in Fig. 5c. Although Table 5 shows that for
q = 1.32e−04, 1.32e−05 and .32e−06, the τ dr values are slightly larger than τs , no oscilla-
tion appears behind the drainage fronts. This may be caused by the hysteresis in the capillary
pressure, because in Fig. 5b the oscillations are weaker than Fig. 5a even without hysteresis
in dynamic capillary coefficient.

In Fig. 5d, we plot the relationship between phases pressure difference and saturation
obtained by Model 3 for all fluxes. At the imbibition front, the phases pressure difference is
smaller than the equilibrium imbibition pressure. Behind the front, the pressure–saturation
follows the equilibrium drainage pressure and finally stops at the tail saturation. This figure
shows similar pressure–saturation behaviour as the experiments presented in Fig. 6 inDiCarlo
(2007). As can be seen, at the lowest flux, significant pressure overshoot can still be obtained
byModel 3. This phenomenonwas also observed in the experiment in DiCarlo (2007). Selker
et al. (1992) shows that saturation overshoot is associated with pressure overshoot. Thus, we
guess even that at low flux, Model 3 can still produce saturation overshoot. Let the space
interval be [0, 1] and Tend = 96,000, and the saturation and pressure profiles computed by
Model 3 are presented in Fig. 5f. It shows that at q = 1.32e−07, very small saturation
overshoot appears.

Figure 5a–c also shows that the computed saturations at the left boundary differ from the
experiments especially when q = 1.32e−07. We ascribe this to the limitation of the Brooks–
Corey model. Assuming that after a long time, the saturation at the boundary reaches the
equilibrium state, we set ∂Sw

∂t |x=0 = 0, ∂Sw

∂x |x=0 = 0. Then, we obtain
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Fig. 5 Solutions obtained by Models 1, 2, 3 for different fluxes q. a–c Cyan, red,
green, blue, yellow and magenta lines are saturation profiles obtained when q =
1.32e−07, 1.32e−06, 1.32e−05, 1.32e−04, 1.32e−03, 2.0e−03, respectively. Black lines denote experi-
mental saturation. d Cyan and magenta lines are the equilibrium imbibition and drainage capillary pressure
curves obtained by the Brooks–Corey model. Cyan, red, green, blue, yellow and magenta dashed lines are
obtained by Model 3 for different fluxes. e Red cross, green line and dashed blue line are saturations obtained
by Models 1, 2 and 3 when q = 1.32e−03. f Blue, dashed blue, cyan and magenta lines denote numerical
saturation, numerical capillary pressure, equilibrium imbibition and drainage pressure, respectively. aModel
1, b Model 2, c Model 3, d phases pressure difference of Model 3 versus water saturation, e solutions of
Models 1, 2 and 3 when q = 1.32e−03, f solutions of Model 3 with q = 1.32e − 07
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Table 6 Saturations at x = 0 obtained by Eq. (48) and numerical simulations

q(ms−1) Brooks–Corey model

θ (experiment) θ (analytical) θ (Model 1) θ (Model 2) θ (Model 3)

2.0e−03 0.3500 0.3279 0.3289 0.3491 0.3494

1.32e−03 0.2665 0.2902 0.2902 0.2902 0.2902

1.32e−04 0.1250 0.1474 0.1474 0.1421 0.1474

1.32e−05 0.0790 0.0749 0.0749 0.0777 0.0749

1.32e−06 0.0500 0.0380 0.0380 0.0377 0.0380

1.32e−07 0.0450 0.0193 0.0193 0.0211 0.0198

q f (Sw) + λn(Sw) f (Sw)(ρw − ρn)g = q. (47)

Using the parameters for imbibition process in Table 1 and the Brooks–Corey model in Table
2, from Eq. (47), we get

Sw =
(

μwq

K (ρw − ρn)g

) λ
2+3λ

. (48)

The saturations obtained by Eq. (48), the numerical simulations and experiments at x = 0
are presented in Table 6. The measured volumetric water saturation at q = 1.32e−07 is twice
as high as the analytical one. Thus, the end time of the numerical simulation is much shorter
than the calculated time.

Since Fig. 5c shows more realistic profiles than Fig. 5a, b, we will focus on this model
and apply more fluxes to test its effectiveness. In Fig. 6a, we plot τ, Tend,�t and q used in
Fig. 5 with solid triangles. Then, we use logarithmic interpolation to get the values of τ, Tend
and �t for intermediate fluxes, these parameters are plotted using open triangles. Figure 6b
plots the values of τ as functions of tip and tail saturations. For both imbibition and drainage,
the values of τ increase as water saturations decrease. This trend seems to agree with the
measured data inManthey et al. (2005), Das andMirzaei (2012) andMirzaei and Das (2013).

In Fig. 6c, the computed tip and tail saturations from Model 3 are compared with the
measured data in DiCarlo (2004). As the flux increases, the tip saturation increases very fast
for flux value in interval [1.0e−06, 1.0e−04], while the tip saturation increases slowly when
flux q is above 1.32e−04. For tail saturations, both the experimental data and computed
results follow the analytical curve given by Eq. (48) when flux is bigger than 1.0e−06.

Figure 6d plots the tip length versus flux obtained by Model 3. For flux values between
1.0e−05 and 1.0e−03, the tip length increases monotonically with the flux. This trend
matches Fig. 12 in DiCarlo (2004).

Figure 6e presents the phases pressure differences at the imbibition front and the tail
obtained by Model 3. For intermediate fluxes, the phases pressure differences at the tail
follow the equilibrium drainage capillary pressure, while the phases pressure differences at
the imbibition front are below the equilibrium imbibition capillary pressure as a result of the
dynamic capillary pressure effect.

DiCarlo (2007) defined the overshoot in capillary pressure, and the overshoot of phases
pressure difference is given as

Overshoot(pn − pw) = Tail(pn − pw) − Front(pn − pw). (49)
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Fig. 6 Parameters and numerical results of Model 3. a Red, green and blue triangles denote values of τ, Tend
and �t . Solid triangles denote the parameters used in Fig. 5c; open triangles are obtained by interpolating
solid triangles. These values are used in b–f; b cyan andmagenta lines denote the values of τ at the imbibition
front and the tail; c experimental data are from DiCarlo (2004). Cyan squares and magenta solid circles are
the tip and tail saturation obtained by Model 3. Blue line denotes the tail saturation obtained by Eq. (48).
d Red circles are tip lengths for different fluxes. e Cyan and magenta lines are the equilibrium imbibition
and drainage capillary pressures obtained by the Brooks–Corey model. Cyan and magenta circles are phases
pressure differences at the imbibition front and the tail. f Cyan and magenta circles denote phases pressure
difference at the imbibition front and the tail and red circles are the overshoot. a τ, Tend and �t for different
fluxes, b τ as functions of tip and tail saturation, c tip and tail saturation versus experiment, d tip length as
a function of flux, e phases pressure difference and saturation at the imbibition front and the tail, f phases
pressure difference and the overshoot for different fluxes
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Figure 6f plots the phases pressure differences as well as the overshoots for different fluxes.
The phases pressure differences at the imbibition front are higher at low flux values than
at high flux values. At q ≈ 1e−05, the phases pressure difference at the imbibition front
reaches a minimum while the pressure overshoot reaches a maximum.

5 Conclusion

In this study, we applied the Castillo–Grone’s mimetic operators and the implicit trapezoidal
rule to solve two-phase flow models including dynamic capillary pressure (with constant
and hysteretic coefficient) and capillary pressure hysteresis in porous media. Numerical
simulations show that the second-order mimetic operators mimic the Green–Gauss–Stokes
theorem with high accuracy for all three models. The hysteretic dynamic capillary pressure
model with capillary pressure hysteresis produces realistic saturation overshoot and pressure
overshoot phenomena as observed in DiCarlo (2004, 2007).
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