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Abstract We propose and study a class of numerical schemes to approximate time-fractional
differential equations. The methods are based on the approximations of the Caputo fractional
derivative of order & € (0, 1) by using continuous piecewise polynomials, which are strongly
related to the backward differentiation formulae. We investigate their theoretical properties,
such as the local truncation error and global error estimates with respect to sufficiently
smooth solutions, and the numerical stability in terms of stability region and A (% )-stability.
Numerical experiments are given to verify our theoretical investigations.

Keywords Caputo fractional derivative - Continuous piecewise polynomial - Time-fractional
differential equations - Stability - Convergence analysis

1 Introduction

Fractional calculus, as a generalization of classical calculus, has been an intriguing topic for
many famous mathematicians since the end of the 17th century. During the last 4 decades,
many scholars have been working on the development of theory for fractional derivatives
and integrals, found their ways in the world of fractional calculus and their applications.
For more detailed information on the historical background, we refer the interested reader to
the following books: [6,21,22,34-36,38] and [20]. As an application of fractional calculus,
differential equations possessing terms with fractional derivatives in the space- or time- or
space-time direction have become very important in many areas. Particularly, in recent years
a huge amount of interesting and surprising fractional models have been proposed. Here, we
mention just a few typical applications: in the theory of Hankel transforms [15], in financial
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models [40,42], in elasticity theory [5], in medical applications [23,39], in geology [8,27],
in physics [7,10,33] and many more.

Similar to the work for ordinary differential equations, investigation of numerical methods
for time-fractional differential equations (tfDEs) started its development. This paper will
consider numerical approaches to tfDEs of the form

CD%(t) = f(t,u(t)), te(0,T] (1.1

with initial condition u(0) = uo, where the operator € D* denotes Caputo fractional derivative
of order o, whose definition will be given in Definition 2.1 in the next section. As shown in
[12], if f (¢, u(z)) is continuous and satisfies the Lipschitz condition with respect to u, then
equation (1.1) possesses a unique solution in C[0, T']. For this case, (1.1) combined with the
initial condition is equivalent to the following Volterra-type integral equation:

1

t
u(r>=uo+—/ (=5 fEu@)E, e (0.T]. (12)
r@ Jo

With respect to numerical approximations for (1.2), two general approaches, called product
integration method and fractional linear multistep methods, have been widely discussed. In
these cases, a general discrete form of (1.2) is written as

n m
un =g+ (AD* D wuj ftj, u) + (AD* Y wy i ftjuy),  n=k (13)
j=0 j=0

with fixed m € N. Fractional linear multistep methods were originally proposed in [30] in the
mid eighties of the last century. This type of methods construct the convolution quadrature
weights {w; };?0:0 satisfying

i 0(1/€)>“
2t <p<1/s> ’

j=0

where (p, o) denote the classical implicit linear multistep formulae. For the motivation
behind this idea we refer to [28]. [29] and [31] discuss the accuracy and stability properties
of this type of methods. We can see they highly benefit from those of the corresponding
multistep methods. Another more straightforward approach to generate the weights {w;} and
{wy, j} is based on product integration, that is to replace the integrand f (&, u(&§)) by some
piecewise interpolation polynomials, and construct their fractional integrals of order « as
approximations of the integral in (1.2). On the accuracy and efficiency of these methods
applied to some Volterra-type integral equations with irregular kernels, we can refer to [9,
11,13,26] and [6,24]. In addition, [18] applies exponential integrators to fractional order
problems. Generalized Adams methods and so-called m-steps methods are utilized by [1,2].

Under the framework of product integration, recently, some new numerical approxima-
tions of the Caputo fractional derivative of order @ € (0, 1), named L1 method [25], L1-2
method [17], L2-1, method [4] and method [32], were proposed and applied for solving time-
fractional differential equations. These methods are based on piecewise linear or quadratic
interpolating polynomials approximations. In this paper, we generalize the approach by
improving the degree of the piecewise polynomial to 3 < k < 6 to approximate the func-
tion that possesses suitable smoothness. For this situation higher order of accuracy can be
obtained. We establish local truncation errors and global errors estimates of the numerical
schemes for (1.1) in detail. In addition, we mainly study the numerical stability of the L1
method, L1-2 method, method in [32] and higher-order methods proposed in this paper. We
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apply the technique in [31] to the investigation of the stability regions of this type of numerical
methods. Further, we give rigorous proof that L1 method, L1-2 method and method in [32]
possess A(%)—stability. Numerical experiments confirm our theoretical analyses and show
that this class of methods are A(6)-stable uniformly for 0 < o < 1, and for some specific «,
A-stability can even be obtained.

The paper is organized as follows. Section 2 introduces numerical approximations of the
Caputo fractional derivative of order o« € (0, 1), and applies them to the discretization of
problem (1.1). The local truncation errors of the proposed methods are discussed. Sections 3
and 4 respectively treat the stability and convergence of the discrete methods. In Sect. 5,
numerical experiments confirm our theoretical considerations with respect to order of con-
vergence and stability restrictions.

2 Approximations of Caputo Fractional Derivatives Using Continuous
Piecewise Polynomials

We first introduce fractional derivatives in the Caputo sense:

Definition 2.1 ([12]) Let @ > 0, and n = [«], the «-th order Caputo fractional derivative
of a function u(¢) on [0, T'] is defined by

Y G
Fon—a) Jo (=g

CDY%(r) = de 2.1

whenever 1™ (1) € L'[0, T]. In particular, the Caputo fractional derivative of order @ €
(0, 1) is defined by

CDvu(t) = —— " ) uM(&)d 2.2)
u _I‘(l—ot)/o(_g u’(§)dé .

whenever uD (1) € L[0, T].

Next, we will derive a class of numerical approximations of the Caputo fractional derivative
of order « € (0, 1) by constructing a series of continuous piecewise polynomials. The main
idea is as follows.

Let .# = [0, T'] be an interval and the M + 1 nodes {ti}i"i o define a partition

O=tg<t;--<ty_1<ty=T. 2.3)

Assume that p",’ (t) are a class of polynomials of degree k > 1 with compact supports
J; = [tj_1. t;]. Their coefficients are uniquely determined by the following k + 1 conditions

Py ) =ult), n=j+q-1j+q-2.....j+qg—k—1 (2.4)

Jj—1

Here the index ¢ records the number of shifts of the k + 1 interpolating nodes {t,},_ i1k

and the sign of ¢ indicates the direction of the shift. Then we have

Jjtq—1 Jjtg—1

t—t
Pi,o="> uw) ] t_t’”, te;. (2.5)
n=j+q—k—1 m=j+q—k—1" "
m#n
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If the partition (2.3) is equidistant, i.e., t, = nAt, 0 <n < M and At = %, then (2.5) can
be written as

&
p];.’q(t):Z ”‘((t;)qnl) H(t tivg—1-1), 1€ 5. (2.6)
n=0

For convenience of notation, let t =t; | + sAt, we get

k
s—q+r—1
plqu(t) = Z ( . )vm(w,l), 0<s<l, Q.7
r=0
where (‘qur*l) denotes a binomial coefficient, and the r-th order backward difference

operators V" satisfy
Voult) =u(t),  Vu)=V""ut) -V uoy),  r=1

Let

ChI) ={v) € C(F): v@t) =) ajt' on.7})
=0

be the space of continuous piecewise polynomials of degree at most k. On the uniform grid,
we construct a class of polynomials of the form

Pk(z)—Zp,k ,(r>+2p, O+ Z P 0, (2.8)

Jj=k Jj=n—i+2

where 1 < i <k <6andt € (t,_1,f,] forl <n < M. Z] 1P]k ](t) 0 and
ZJ —n— H_zp”H_l j([)—Olfk—l < landn —i 42 > n, respectively. ThenPk(t)are

considered as approximations of the function u(¢) in (2.2) in the space Cﬁ (7).
Correspondingly, we propose the operator

1 ! dprk
DY u(t)y=—— | ¢t—&"%—d 2.9
ki1 () F(l—a)/o( §) a (2.9
for t € .# as an approximation to (2.2). If t = ¢,,, we rewritten (2.9) as
(At)_‘" / _ dP (- 1+sAt)
DY . = — 1 — P
k,iln Td—w _a) Z n—j+1-s57" o

(2.10)

(an= Zw(kl) j+(An” Zw(k‘)

where u, := u(t,).

Remark 1 The construction of Pl.k (t) in (2.8) mainly depends on the continuity requirement
on the interval .7, i.e., the interpolation conditions

Pl ) =uty), n=j—1,j 2.11)
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should be satisfied. This means that on each .#;, the conditions j+¢—1 > jand j+q—k—1 <
Jj — 1in (2.4) should be satisfied, which yields 1 < ¢ < k. Therefore, for k = 1, there is only
one piecewise polynomial, denoted by Pl1 (1), in the space C 11, (#). Moreover, (2.8) yields

Plt)y=>"pj,@).

J=l

It is easy to see that Pl1 () coincides with the known L1 method proposed in [25]. For k = 2,
we can choose pjl.’l(t), 1’5,1(0 and P?,z(t) on each .#; such that (2.11) holds. To preserve
the convolution property as much as possible, here we provide two cases

n n—1
PEO=pl O+Y pi@) and  PIO) =) ply)+pri(0).  (212)
j=2 j=1

where ¢t € (f,—_1, t,]. The two cases in (2.12) coincide with the approximate methods dis-
cussed in [17] and [32], respectively. In addition, as presented in (2.8), we restrict our further
discussion to the case i < k. Because under the condition, the corresponding discrete oper-
ators D,‘("’ ;Un in (2.10) can be computed with the least starting values.

In the following part, we present the explicit representations of the weight coefficients
{wr(f’j[)} and {a);k’i)} for 1 <i <k < 3 asexamples. Note thatinthe case 1 <i < k <2, the
weight coefficients have been derived by [17,25,32] in a similar way. Here we rewrite them
into the form of integrals for convenience of further theoretical analyses. First, we define a
class of integrals of the form

1
1 —ag(s—q+r—1
mof("“ﬂ) “w( ), nzo,
0, n <0,

I,f’q = (2.13)

where g, r € Nt and n € Z. If we denote

I, .= nqu, Vg=1,2,...,

v =Vl - vl YkeNT,

then the weight coefficients can be expressed as

(k,l):(l,l) wm,():_lm, m>1, wp, =VI,, n=>Q0,

(k,i)=Q D) : wno=2Ip_ | —Ijy—In, Wu1=—Ip_ |, m=>2,
wy = VI, + V7, n=>0,
k,i)=(2,2): Wno=-VIp 1+ 130 Wai=—Ip m=>2,

wo=Io+ L+ 15, +1{, o =Vh—Iy+13, 215, —2I{,,
0 =VE+ Vi, + 15, o=V + VI, n=3,

and
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(k,)=@G,1):
Wm0 =~V —Ip 4200+ 15— 1y 430 =31 5,
Wy, 1 = —2]1"‘[*1 - 21)12171,2 - 1271’1 - 13171,1 + 31’2*2,1’

) \ (2.14)
W2 = Ly + Im_1,2 - 1\1_2,15 m >3,

”
wy =V + VI +V, n=0,

(k,i)=(3,2):

W0 = =Vt = Lnsi o+ 20 0 = Lnsy o+ 3055 =31, 5.

Wit = —=In = Ly = In o + 310 5,

Wy = —1,,31_1!2, m >3,

wo=To+ I+ 1{,+ 15, + 1,413,

w1 =Vh—Ig+ 1§, —21t, =21+ I3, =3I}, = 313 ,,

wy=VI+ V3, + 15, + 15, — 313, + 31 , + 313,

w3 =VI+ VI, + VI, — 15,

n =Vl + VI 5+ VL, n>4,

(2.15)

(k,1) = (3,3):
3
W0 =—Vinta = V23— I n3+30 5= 315 5
Wit = Vg1 — g3+ 200 3 — L3 5+ 31 5,
W2 = —In — 11121,3 - 131’33 m >3,

wo=lo+h+ L+ I3, +1{,+ B3+ 15, +1{,+ 135,

w1 =VI—Ig—Ii + I35 — 2135 — 21}, — 213 + I35 — 313 — 31} , — 313 ,,
0= VI + VI s+ [Ty + 15 + 135 — 335+ 355+ 31, + 311 .
w3=VIs+ VI3 + V-1, - I3,

0n =V + VI, + VI 55 n>4

(2.16)

It can be observed that when o« — 1, the operator D,‘;" ;i in (2.10) recovers the k-step BDF
method.
Using (2.10), we construct the discrete schemes

Dl?,iun = f(tn, un), n >k, (2.17)

as approximations of Eq. (1.1). If starting values are given, then we define the local truncation
errors of the n-th step by

70 = DY ju(ty) — “Du(ty),  n >k, (2.18)
where u(t) is the exact solution of (1.1).

Theorem 2.1 Let0 < a < land 1 < k < 6. Ifu(t) € CKY[0, T, thenfor 1 <i < k, it
holds that

oD = 0 (g 7 AR 4 AR 2k (2.19)
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In particular,

(k k) _ O(Alk+] 01) n>k. (220)
Proof From (2.7), we have
s—q+k
p];,q(t) —u(t) = u(k+1)(%-j)< L j_ X )(Al)k+1 2.21)

fort = tji—1 +sAt,0 <s <1, where tivg—k—1 = Ej Stjtqg-1-
Inspired by [17], integration by part yields

‘ 1 "ot _{dPK(@)  du@)
(k,i) __ _ o i _
= F(l—a)X; - (=D ( dr a )Y
. —«a T cal (pkop
_le—ooz;l;(” 0= (PEw —u) dr 222)
—a (A~

for n > k. Substituting (2.8) and (2.21) into the last formula of (2.22) and taking i = k, we
get

At)k+l—0l n—k+1 s
(k,k)’ _ ol ‘ (k+1) ‘ / _ | — o)1 d l
U S TR Sy max et ) A VY
_ s+k—n—1+4j
+ Z /(n—1+1 )‘“( )ds',
j=n—k+2 k+1 )

andforl <i <k —1,

—a k—i 1 .
o (A1) ) " ~ (s
————«m)&ﬁgﬁm @Néjﬁ(n—/+l—w ( as|

“I'd—-ow k
n— l+1 .
k —
+(At)k+lmax’u(k+l)(§)‘ (/ (n—j+1—s5) ‘(H l)ds’
te s il k+1
1 . .
k—n—
+ (At)k+l maX ’ (k-‘rl)(g)‘ ’ / (n _ ] +1-— S)—a_l (S + n 1+ ])dS’)
- 0 k+1
=n— l+2
s—q+k

Since for any ¢ < k with ¢, k € N*, the factor (1 — s) is included in ( ) and the term
Lt
+1

k+1
) is bounded for 0 < s < 1, we have
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Iz (kk)|_05§f1f) (k)Z/ (n—j+1—5)"%(1 —s)ds

<Ol(At)k+l —a
- I'dld—-w

< (Aapkti=e c® (r(1 1_ o 1“(21— a)> ,

n—1
./‘(n—j—l—l—s)*" lds—I—/ (1—s)"%ds

where C® are bounded and depend on u*+tD and k. On the other hand, if i < k, it holds
that

A §r(1 )C(’“)((At)k “Z/ (n—j+1-5""""ds
—l—(At)"““"Z/ n—j+1—-5""a —s)ds)
i=1 0

Sc(k,i)<ﬁ(At)k+l(k—l)(tn ki)

k+1—a 1 1
+ (A1) (F(l —a) + re —a))>’

where C %) are constants dependent on u®, 4 *+1 and k, i. o

3 Stability Analysis

To analyse the stability of discrete schemes (2.17) with initial value u(0) = ug, we apply
(2.9) to the test equation

CD%u(t) = au@t), reC (3.1)
and obtain
Dy jup = Ay, n>k. (3.2)

We rewrite (3.2) as the formal power series form

o0 o0
D DY jttnskE" =AY unir€”. (3.3)

Replaced by (2.10), formula (3.3) becomes
o D@ % &) =22 ) + 540 ®), (3.4)

where z := A(Ar)®. The above notations are defined as

E) =Y unng", o*E) =Y ofen,

n=0 N (35)
0 =Y S (wl; + el )
j=0 n=0
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Theorem 3.1 The stability region of (3.2) with1 <i <k < 6 is C\{w®D (&) : |£] < 1}.

Remark 2 The stability region of a method applied to the test equation (3.1) is the set of
z = AMAnN* € C with At > 0 such that u,, — 0 as n — oo whenever the starting values
uo, ..., Ur_1 are bounded.

Proof If we denote the stability region of (3.2) by S%?, then the proof of S*) =
C\{o®D (&) : || < 1} is equivalent to proving S®9 D C\{w®D(£) : |€] < 1} and
sk c C\{w*D(€) : |&] < 1}, ie., to prove that if z € C\{w®) (&) : |&] < 1}, then
z € S®D and if 7 ¢ C\{w®D (&) : |&|] < 1}, then z ¢ S&D.

On the one hand, if z € C\{w%® (&) : |£] < 1} and |z] < 1, then z — 0®D(§) £ 0
for |£| < 1. Thus, by Lemmas A.4, A.5 and Theorem A.1, the coefficient sequence of the
reciprocal of z — o®D (&) is in I and the coefficient sequence of g(k’i)(g) tends to zero.

If |z| > 1, formula (3.4) can be rewritten as

P (3)
_ Z
%(%—) - w(k‘i)(é') B 1 )

4

() .
in which case the coefficient sequence of the reciprocal of o @) — 1isin /', and the

kD @)

n
coefficient sequence of gf converges to zero. In addition, if lim Y |/;| = L < 400
< n—00

Jj=0

and lim c¢; =0, then lim Z Iy—jcj = 0 follows. This implies u, — 0 as n — 0.
]%oo n—>oo .

On the other hand, assume that 7z = w®D (&) for some |£| < 1, then formula (3.4)
becomes

(0 2@ — ® D) % ©) = g*V®), (3.6)

If applying the methods (2.10) on a constant function, we obtain from Theorem 2.1 that the
corresponding truncation errors are zero, which leads to

k—1
2w “”)+Z =0 nzk,
j=0
and consequently,
oo k—1 n
(k,i) (ki) —k
PR DBV L
n=k \j=0 j=0
oo f[k—1
(G (ki)
NI SN
n=0 \j=0
oo k—1 (ki)
_ (k.i) (k.i) o™ (E)
_Z (wn+kj+w,l+k7j)§n+?—0.
n=0 j=0
Assume that ug = --- = up_1 # 0, with the expression of g®D(£), we find gk (&) =
(ki)
uo == (E) If %D (&) = 0, then # (£) = which means that u,, = ug for alln € N. If

wk ’)(Eo) # 0, then we have
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o) — o) | oD@ —o DG | ohD(E)

§—2%o §—%& §—%o
If assume that u, — 0 as n — o0, then from Lemma A.6, it follows that the coefficient
£y o@D )

% (€)1 —=§)

sequence of (1 — is in the space /!. This indicates that the coefficient

(1,1) _ (L1 ..
sequence of % (£)(1 — S)%’g@o) tends to zero. In addition, Lemma A.3 presents

. 1) (£)— o) .
that the coefficient sequence of W converges to zero. However, the divergence

of the coefficient sequence of E*Léo for |£y| < 1 leads to a contradiction. Thus, there exist

some nonzero bounded initial values {ui}f.:é such that u,, 4 0 as n — oo, which indicates
7 ¢ SKD, O

Analogous to the A(0)-stability for classical ODE mentioned in [19], we define A(6)-
stability of methods for fractional ODE.

Definition 3.1 A method is said to be A(6)-stable with 8 € [0, 7 — %) and 0 < o < 1, if
the sector

So ={z:|arg(=2)[ =0, z#0}
is contained in the stability region.

Theorem 3.2 The method (3.2) is A(%)-stablefor 1<i<k<2

Proof For 6 = % in Definition 3.1, it suffices to prove Sz SED for1 <i <k <2,

namely, to prove w(k”')(f) = 0 for some |£]| < 1 and Re(w(k'i)(é)) > ( otherwise.
First of all, it can be readily verified that w9 (1) = 0, which implies 0 ¢ S%. Next we
prove the results for the case (k,i) = (1, 1), (k,i) = (2, 1) and (k, i) = (2, 2) separately.
Case (k,i) = (1, 1): from the expression of oD (&), we obtain

0V E) = 1o+ Y VIE = (1 -1 ), 3.7

j=1

o
where I(§) = > I,6". Lemma A.l and Theorem A.2 yield
n=0

1
I, :/ r"do(r), ne€N, (3.8)
0

where o (r) is a non-decreasing function. Suppose that |£| < 1, substituting (3.8) into (3.7)
yields

o 1 1 l_s
(1,1) _ _ nen _
Re(a) (g)) _Re((l g)’;)/o e da(r)) _fo Re(l_rs)da(r).
Let& = |£€|(cosf + i sin @), then
1—& (1= +DIElcosd +rlg?) +i ((r — 1)|]sin)

1—rE (1 — r|&] cos0)2 + (r|&|sin6)2
ForO <r <1land || < 1, we find
1 — (r + DI&| cos® + r|&|* = min ((1 — |£|cos0)?, 1 — [£] cos ),
1 —2r[€|cosf + r*|E]* < (1 +rlE])* < 4,
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which yield

1 . 3 2
/ Re (i) do () = min ((1 — €] cos0)%, 1 — |&| cos0) o,
0 I —r& 4

Case (k,i) = (2, 1): using the definition of o>V (&), we observe

V(€)= 3 (Vi + V717 )

n=0 - (3.9)
=(1-8IE)+U-5T7¢)

=(1—&) (1) —2[}E) + B - I} ©)),

where
o0 o0
[ =) LE, [E=) I
n=0 n=0
Lemmas A.1, A.2 and Theorem A.2 yield
1
Iy =217 = / rdu(r), n=0,1,... (3.10)
0
and

1
13,1=/ r'dy(r), n=0,1,..., (3.11)
0

where both v and y are non-decreasing functions. Then for |§]| < 1,

Re(w(2’1)(§)) = /OlRe( ! _i)dv(r) +/()1Re(W)dy(r).

1—r 1—r¢
Moreover,
1-86-8
1—ré&
_ (3 — 4|€| cos O + |€]? cos20) (1 — r|€| cos B) + (4 — 2|&| COSO)rISIZSinze
- (I = r[€]cos6) + ([&] sin 6)
(Br — |&]%r — 4 + 2|€| cos 0) €| sin O
= rlElcos0) + (r[&| sin )2
Since

3 —4]€|cosB + |E]> cos20 = 3 — 4|&| cosO + 2|&|> cos? O — |£]7 > 2(1 — |&| cos 6)2,

we get

L —53—§) min((1—|§|00s0)3,(1—|E|cos@)2> ,
/O\ Re<ﬁ>dy(}’) > ) 10’1.
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Case (k, i) = (2,2): the series 0®? (£) satisfies

<“><5)—10(1—s>+101(1—s>2+<1—s>21n+1s"+<1—5)22 128"

n=0 n=0

=I5, 0=5B =&+ (1 =&)Y 17 &+ 1 =& (I¢) - 21} ®).
n=0
(3.12)

since for n > 0, the relation I,, + 13’2 = Inz’l yields

(1-8 Zl,ms" +(1—§) Z 128"

n=0

—(1—5)(213+115 —SZ 218"
—(1—s>2 2 E" +(1—5)Z gt =217, 1) "
=(1-¢ )Z T 1= (16) = 217©) — (o =213 )).
Suppose that |€] < 1, substituting (3.10) and (3.11) into (3.12), we obtain
Re(®2(®)) = /0 Re((1- 63— 6)dr ()
+/Oere(i ’

—& 1—-¢&
_rE)dy(rH/ Re(1 S)du(r)
1—&2  (1—|&*cos20)(1 —r|€|cosB) + r|€| sin 6 sin 26

1—rg (1 — r|€[cos0)2 + (r|&| sin6)2
(1 — [£]? cos 20)r|&|sin@ — (1 — r|€| cos 0)p> sm29
(1 —r|&|cos0)2 + (r|€|sin )2

Furthermore,

+1i

Since forO0 <r <1,

(1 — €)% cos 20)(1 — r|&| cos ) + r|&|> sin @ sin 20
=1—|&17cos20 — r|€|cos® + r|&|> cos O
> (1— 1)1 — [&]] cos b)),

we obtain

! 1-¢&2 (1= &) (1 = |&]|cos@]) (!
/(; rRe(l_ $>d y(r) > 2 A rdy (r)

_A =P - €1l cosO)
= 1 i1
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Finally, for 1 <i <k <2, we conclude

Re(a)(k’i)(é)) _ min ((1 — |£] cos0)2, 1 — |&| cos 0) =0 £ < 1.

4
In addition, according to Lemma A.6, there exist constants M *.0) > 0 such that
. L)
l® (&) — 0™ (&0)| < T=E

This implies that 0% (£) is continuous for |£| < 1 and & # 1. Therefore, for any fixed &
lying on the unit circle, the angle of which satisfies arg(§) = 6g # 0, there exists a sequence
&E=0- %)é, n=1,2,..., with |&,| < 1, such that

& =&l &§#L

. . I
Re(w(k”)(§)> = lim Re(a)(k”)(én)> > Zomin ((1 = cos )%, 1 — cosfy) > 0.
n—oo

4 Convergence Analysis
In this section, we will establish the error estimate for (2.17). Assume that u(t) is the exact
solution of (1.1), then it satisfies

DY ju(ty) = ftn, u(t)) + 187, k<n <N, 4.1

where the difference operator Dy ; and the local truncation error 'L'(k D are defined by (2.10)

and (2.18), respectively. Suppose that u,, ) is the solution of (2.17) for each k, i, we denote
global errors by

e®D = y(t,) —u®D,  0<n<N. (4.2)
Subtracting (2.17) by (4.1) yields
DY el =sf %0 4 kD gk <n <N, 4.3)

where 8150 = £(t, u(tn)) — f(tp, u®"). From (2.10) and (4.3), we have

Z wkDeki) 4 walk DD = (AnsfED + (A t:D k<n < N. @44

Multiplying £~ on both sides of (4.4) and summing up for all n > k, we obtain

oo k—1 0o n+k
(k.i) (k.i) k, ki) )
ZZ( n+lkm n+lk m) : l)gnJFZZ n+lk —Jj J l
n=0 m=0 n=0 j=k
k, k,
= (AD)* Z fn(+ll<)‘§n + (An)* Z tr5+llc)
n=0 n=0
It follows that
. . k_l . . . .
o®0@e®VE) = Y e Vst ) + (AT AV E) + (an T D @), (45)
m=0
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where
o0 o0 o0
. . k, . k, . i - k
0@ =Y sie" = =3 (wil, + o) 8 e =Y elle
n=0 n=0 n=0

a)(k,i)(%-) — Za)’(‘lk,i)%-n, Sf(k,t)(s) Zéf(k l)%_n ,L,(k,i)(é_-) Z Tyfﬁ-]l()

n=0 n=0 n=0
(4.6)

Theorem 4.1 Let u(t) and uy, k < n < N be the solutions of Egs. (1.1) and (4.4), respec-
tively. Assume that f(t, u(t)) in (1.1) satisfies the Lipschitz continuous condition with respect
tou. If u(t) € C*10, T, then

() forl <k <3,

k—1
|e’(lk,k)| < C(k,k) (Z |€£'f'k)| + (A[)(k+l) + (At)k-‘rl—ol tf:l) , k <n< N, (47)
m=0
(ii) for1 <i <k <3,
k—1
leg?| < cD (Z ey P 1+ (AD* + (antH! r::_1> , k=n<N, 43
m=0

where At > 0 is sufficiently small, NAt = T, and C*" > 0 are independent of N and n.

Proof Substituting formula (B.14) into (4.5), and using (B.21), we have

ki r&De) = (k,i) . (k, k, k,
efNE) = —>= T 5e > el s @) + (A sfEDE) + (AT @) | (4.9
m=0

For k <n < N, we rewrite (4.9) in the equivalent form

J n—k J
(ki) _ (k,i) (ki) (— a) (kl) (k,i) ( 0!) (k,i)
Z ‘Z Rk 285 s A0 T 8
m=0 i=0 j=0 i=0
n—k
k,i k,
+ ANy Zgj v (4.10)
Jj=0

(—a)

where coefficients g, ~ are given in Lemma B.2. Since f (¢, u(¢)) satisfies the Lipschitz

continuous condition by assumption, there exist constants L& > 0 such that [§£\"| <
L*&D1e%D| for k < n < N. Tt follows that

3> ]em"z_" . ,]zg< ?

¢ &0

lln

‘er(lk,i)

(k,i)
l+k

+(AD)® Zg,g ‘,’j i

<L<k,i>

(kz>|+

). 4.11)
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On the one hand, by (B.11) and (B.20), there exist constants ¢x; > 0, such that |s(k ')I <

n—® ~ (a=1) :
Chi T(I=g) = Ck.i&n . Hence, we obtain

(ki) (=) (kz) (k,i) (=) (a=1)
nk]‘zg = &, nk}‘zgjlgl
]
e .
<Gy || =aam®D, (4.12)
j=0
where Z] Og; ‘Z’)gl(“ D' = 1 forany j > 0 in view ofthe identity (1 — &)~*(1 — &)@~ ! =
(1 — &)1, On the other hand, there exist constants E,(n D 0, m > 1, such that |s(k ')| <
(k,i) n—”! ~(/< i) (@) fe o
Cm IF( a1 = |gn ' |. This gives
n—k n—k
(ki) ( Ot) (ki) ~(k,i (ki) (—a) (01)
Zrnk;‘ Stm Ifcﬁn”Zrn-k-J\Zg
j=0 j=0
n—k )
<2600 3| 8, 4.13)
j=0
where the last inequality holds since it is satisfied that Zl] Og(, ‘;‘)gl("‘) = 0 for any
j = 1, and Zz Og( 0‘)|g(‘)‘)| = g§ “)g(()"‘) sz 1g§ ‘l")gl("‘) = 2g§_°‘) follows
from Lemma B.2. In addltlon the sequences {rn )} belong to /!, and g( 90
as n — o00. Therefore, Z |,(lk ;C) lg ( Y 5 0asn — oo. Then, the sequences
J
Z']’;]{) | ,(lk ;{) il Zl 0 g; @) (k ’)I can be bounded by 26%D ppkD.

In the cases 1 < k < 3, recalhng |‘L’nk k)| < C(S,k) (At)k+1_°‘ uniformly for n > k in
Theorem 2.1, together with (B.17), we have

(kk) (=a)
Tk~ J)Zg

(At)"‘
]_

Titk n—k— ] i+k

n—k
&0 a (=) (k, k) (k.k)
= @0 Y s ( I

n—k
< (At)k-H Cék)Mélk’k) Zgjfd)
Jj=0

'(17

(06)

—k
< (At cPmEP(1 4 C Z

< (A P pmER (14 @f *~dr)
CER (A 4+ (ank 1o ). @414y

In other cases 1 < i < k < 3, according to Theorem 2.1, there exist constants Cék’i) > 0,
such that

) ) — k)1 Ap)ktl-«a
kD] < k) ((At)kfa (n—k) (A1) ) 0> k.

T (o) I —a)
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Together with (B.17), it follows that

n—k n—
a3 [k ;‘Z 7D <C(k:>((m)k5 Z rln /‘2g< @ | g@
j=0 j=0
n— I‘l—
ki -
+ (ADFH! Z r}g_;()_j‘ Zgl( a))
j=0 1=0
n—k
. . _ 4.15
Ecék,,)(z(m)kaaz ry(,]i;{)_j‘ 5 @) (4.15)
Jj=0
n—k
ki —a—1
4 (ApkH! Z V,i_Z)_,,»‘ g,(,_i ))
j=0
kz) ((At)k+(At)k+l o k)'
Therefore formula (4.11) becomes
n—k—1
i i - k, ki k ki
e <cansL®o( Y g,i_?,Z\ KD 1| 4 g5 Z S et
j=0
+ 85 [ Ole D] ) + 680, n =k,
For 1 <i <k <3, we obtain from (4.12), (4.13), (4.14) and (4.15) that
k—1
B = 0 (Z e+ @D apt e r:;w) et
m=0

and

k—1
sk = clkh) (Z les D1+ (AD* + (Apf = t,‘,'_l) . onzk

m=0

where C(k D = = max{Cx,; M(k ) 2~(1< ')M(k D C(k ’)} Let At > Obe sufﬁc1ently small. Then

there exist bounded constants ck such thatO <1 (AI)O‘L(’“)g( @) = C,”, and
|e,(€k’i)| <S]Ek,i)
n—k—1
|e(k')| <8(k’)+(At)ac* L(k’)< Z g( o Z| (kl) z(ili)
=0 (4.16)
n—k—1
— ki ki
+85 2 I lef). nz kL,
1=0
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where S(k - <t lé(k oA . Next, assume that { p,, }n>0 are a series of non-negative sequences
satisfying
p(()k D) g/gk,i)’
7 (ki n—1
p(k’l) 8(klk) (At)OlL( i) ( 3 -)01 1 (kl) w1 (417)
n n+ F(a) j ) - 1,

Jj=0
where L% are chosen such that
J ki) — — max{c] L& Dy kD (1 + F(a)g( a)) ’C;:JL(k,i)Mék,i)gigfa)nlfar(a)}'

Then using the weakly singular discrete Gronwall inequality in [14], we conclude that
{ p,(,k") }n>1 1s monotonically increasing with respect to n, and satisfy

P < S8 B (4D man®), =1,

where E,(-) denote Mittag-Leffler functions. In addition, from (4.16) and (4.17), we have
(k,i) (k, l)
len '] < p,_ i forn > k, and consequently,

lek:i)) < §®kD g, (Z(k,i)(n _ k)ama) <3k E, (I:(k,i)Ta)
fork <n < N. o

Remark 3 Note that the error estimates (4.7) and (4 8) are uniform for all n > k. For those
t, away from the origin, under the conditions e,(,, = O0((AD%) for1 <m <k — 1, we can

observe that the errors are (kK + 1 — «)-th order accurate in time in the cases 1 <i <k < 3.

5 Numerical Experiments

In this section, we utilize (2.10) to approximate the equations in Examples 5.1 and 5.2, and
prescribe starting values exactly.

Example 5.1 Consider the linear fractional ordinary differential equation

CD%u(t) = ru(t) + f(t), te€(0,1],

5.1
u(0) = uo, oD

where 0 < a < 1. The exact solution is given by u(t) = e~/ € C®|[0, 1], if f(t) =
—t1"E | 5y (—t) — xe™ " € C[0, 1] N C(0, 1], where the Mittag-Leffler functions [36]
are defined by

00 k

t
Ea’ﬁ([)=/§m, O[>0, ,3>0

In Fig. 1a—d, we plot the truncated boundary locus curves ZSOO(? a)(k D) gv/=16n 0<0<
2m) for 1 <i <k <3 andsome« € (0, 1). It is already known from Theorem 3.1 that the
stability regions of methods (3.2) lie outside their boundary locus curves. Here, we introduce
the points z, = A(Af;)%, 1 < n < 5, where At, = 1/ 21+6 denote different time steps.
Tables 1 and 2 show the accuracy and convergence rates of the error |u(ty) — u%([’i)l for
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25
*
e (,1)(3,2)
1 (ki)=(3.3) *
x z1
*x 2z
05[f * =
* oz
*x 5
of & * %k %k
e— (k,i)}=(1,1)
— (k,1)=(2,1)
-0.5 —(i)=(22)
e (ki)=(31)
—(ki)=(3,2)
-1 (ki)=(3.3)
*x z1
*x 22
-15 x 3
* oz
* 5

Fig. 1 The_ boundary of the stability region for different « and A a ¢ = 0.5, A = =50, b o = 0.3,
h=20xe 3 ,ca=09,1=1000x ¢ 2 ,da =098, i=-500i

g’f,’i) are the

Example 5.1, where #)y = 1 is fixed and M = 2/ for7 < j < 11, u(ty) and u
exact solution and computed solution for (5.1), respectively.

From Fig. 1a—d and Tables 1, 2, we can see the influence of the stability of a numerical
method on global error. In Fig. 1a, the points z, with 1 < n < 5 all lie in the stability regions
fora = 0.5 and A = —50, we get (k + 1 — «)-th order of accuracy shown in Tables 1, 2. In
Fig. 1b, c, {z,,}fl:l fall on the half line with angle % Itis observed that when all {zn}fl:1 fall
out of the instability region (cf. Fig. 1b), correspondingly, as shown in Tables 1, 2, the global
error agrees with (k + 1 — «)-th order of accuracy. On the other hand, due to the points z4
and z5 outside the stability regions for k = 3 (cf. Fig. lc), perturbation errors are magnified
and accumulated significantly, which are shown in Tables 1, 2 as well. In Fig. 1d, {z,} are
chosen on the imaginary axis with pure imaginary number A, Theorem 3.2 tells us that all
{z,} are in the stability region for k = 1, 2. The error and convergence order are obtained
(cf. Table 1).

As a counter example, in Fig. 1d, the point z3 doesn’t belong to the stability region for
a = 0.98, for this case, the errors shown in Table 2 blow up. In fact, it can be observed that
for k = 3, methods (3.2) don’t possess A(%)-Stability when « tends to 1, as it is known that
BDF3 method for ODEs is not A(5)-stable.

@ Springer



J Sci Comput

0T IT—ALYEr8 T 70T 11—H61898'+ 01 LO—HI88€0S'T 80T
0T 0T—HTIS96'T 70T 0T—Hd8ISL6'T 01 LO—HALY0S0'E ¥201
0T 0T—H66SL6 L 0T 0T—H68910'8 0T LO—H66881°9 TIs
0T 60—HE96ET'E 70T 60—HLTIST'E 01 90—H+T9ST' 96T

- 80—HSLLIE' - 80—HSSHTE - 90—HHCTSS'T 8CI 1—=/008 86°0
01°¢ [1—HdLT8CI'1 01C TT—arEET’T 01’1 80—HSYLLY'E 80T
01°¢C [1—HTS8E8H 01'e T1—H10686't 01’1 80—H68888'L ¥201
01'¢C OT—HILSLOT 0r'e 0T—HEEOPT'T 01’1 LO—HSHE6Y'T TIs
01'¢C 01—dI0116'8 ore 01—HSH881°6 Il LO—HS86£9°€ 96T

- 60—H860€8°€ - 60—HL66V6'E - LO—HASITHS'L 8CI %m X 0001 60
€LT €I—HI6LLS'S L9T TI—H9998L'T 181 60—HSTILY'S 8+0C
€L'T TI—H8€T69'E 99°C [T—H9THET' 8l 80—HS0T96'C ¥201
€Lt [1—HTrTr'T ¥9'C T1—HE6671°L 781 LO—HA88SH0' TIs
SLT 0T—AL¥¥T9'1 09'C 01—ASSErr 't S8l LO—HATOVEL'E 96¢

- 60—H0L680'T - 60—H62069°C - 90—dT06¥¢'T 8T1 %w X 0T €0
0S'C 01-dL8T0E'T 6+'C 01-A1#SI9'T ST 90—H8698¢£'C 8%0C
0S'C 0T-d129LE’L 6+'C 01-9L8960°6 ST 90—HLEYSL'9 ¥201
0S'T 60-40€T81 ¥ 6v'C 60-ASTEIT'S (4 S0—HT0SE6'T 419
1S°C 80-H66ELE'T 8¥'C 80-HS£998°C (40! SO—HLOYES'S 96T

- LO-FE]6YET - LO-FELO09'T - Y0—H8E06S'T 8CI - S0
ey [Wn — (Ag)n| ey [Wn — (Wpn| ey [Wn — (Ag)n|

(To=0 To=00 1'D=0 " Y 0

Y 0 JUAIYIP YIm [°S o[dwrexy 10y | Q\&: — (A3)n| Jo sare1 90UIZISAUOD pue SIoLy | dqeL

pringer

Qs



J Sci Comput

86'C PI-A16699'T e F1-H0€80L'T SI'I PI-A¥TISL'T 80T
1€°€e CI-dE9ETET 1T°€T €1-dTT0€8'1 LS¥T $1-498988°¢ ¥201
PI LT~ 90-HEV0LE'T IS°LT— 90-AYPSLL'T €9°91— LO-988LY9°6 419
€0'¢ TI-ALY0IS'6 €0'¢ TI-A10v6t'6 €0'¢ TI-AvELTS'6 96T
- 11-9S60SL'L - 1T-9¥SLEL'L - 11-988%9L'L 8CI 1—=/008 86°0
8IvEl— FE+A06£60'T €9PEl— SE+ar68TY 1 LSSET— YE+H6618T9 8%0C
9’ 0T~ LO-HTYSTH Y €LET— 90-49LE0T 8C'TC— LO-FTEOTL'6 ¥20T
ore €1-d0L6S0'E ore €1-9E6570°¢ ore €1-469060°€ 419
e TI-469679'C e TI-419009°C e TI-AS$959°C 96T
- [1—8¥9597°C —= 11—3680%C'C - [1—A8887°C 8CI %m X 0001 60
vL'T ST—HE86TI'T 89'C 91—HS£998°9 SeT SI—HS0S0T'T 8¥0C
09°¢ SI—HSSETS'L 99°¢ SI—HST807' ¥ 80 S1—H999C€1°9 Y201
oL'e P1—AYS0ET'6 9L'€¢ ¥1—HSTE]S'S 69°¢ €1—HELIEO'T 419
69°¢ TI—HAE0SST'T LLE SI—dSHTSS'L 69°¢ TI—HOPLEE T 96T
- TT—HI19T€S°T - T1—H0L0E0'T - TT—AI10TEL’T 8T1 %m X 0T €0
96'¢ P1—HEF9S8'S 86°¢ PI—HTLSHE'S ¢ ¥1—HTETT89 8%0C
0S¢ €1—920026'9 15°¢ €1—d06¥LE9 0S¢ €1—40TrSTL ¥201
0S¢ TI—HLLSSS'L IS¢ CTI—HSLSST'L 0S¢ TI—H6TT81'8 419
6t'¢ T1—HLI898'8 IS¢ T1—HSTSST'S 6t'¢ T1—H981€T'6 96T
- 01—H86966'6 —= 0T—HLOTIY 6 —= 60—Hd870¥0'T 8CI - S0
ey [Wn — (Wpn| 210y [Wn — (Npn| 210y [AWn — (Npn|
(€e)=0") (Te)=0 (1'e)=0) n Y 0

Y 0 JUAIYIP YIm [°S o[dwrexy 10y | Q\&: — (M1)n| Jo sorer 90USSISAUOD PUE SIOL T IqeL,

pringer

as



J Sci Comput

(k,i)

Table 3 Errors and convergence orders of |u(fy) — u,, ’| for Example 5.2 with u = —1
o M (k,i)=(1,1) (k,i)=(2,1) (k,i) =(2,2)
lu(tpr) —upgl rate lu(tyr) — upgl rate lu(tpr) —upgl rate
0.1 32 1.77420E—05 - 1.34563E—07 - 1.44620E—08 -
64 5.02145E—06 1.82 2.09471E—08 2.68 5.84367E—10 4.63
128 1.41283E—-06 1.83 3.17430E—-09 2.72 3.71249E—-10 0.65
256 3.95463E—07 1.84 4.71557E—10 2.75 8.48118E—11 2.13
512 1.10196E—07 1.84 6.89781E—11 2.717 1.56365E—11 2.44
0.3 32 1.02368E—04 - 1.16950E—06 - 7.44373E—-07 -
64 3.21104E—-05 1.67 1.92603E—07 2.60 1.07277E-07 2.79
128 1.00362E—05 1.68 3.12510E—08 2.62 1.57091E—08 2.77
256 3.12764E—06 1.68 5.01368E—09 2.64 2.32621E—-09 2.76
512 9.72370E—-07 1.69 7.97379E—10 2.65 3.47263E—10 2.74
0.5 32 3.61074E—-04 - 5.29046E—06 - 4.57737E—06 -
64 1.28284E—04 1.49 9.63089E—07 2.46 7.97338E—-07 2.52
128 4.55113E—-05 1.50 1.73854E—07 247 1.39694E—07 2.51
256 1.61301E—05 1.50 3.11964E—08 248 2.45589E—08 2.51
512 5.71284E—06 1.50 5.57391E—-09 2.48 4.32640E—09 251
0.7 32 1.13040E—03 - 1.95934E—-05 - 1.88894E—05 -
64 4.59858E—04 1.30 4.02983E—06 2.28 3.82681E—06 2.30
128 1.86904E—04 1.30 8.24864E—07 2.29 7.76005E—07 2.30
256 7.59344E—05 1.30 1.68344E—07 2.29 1.57456E—07 2.30
512 3.08447E—05 1.30 3.42933E—08 2.30 3.19602E—08 2.30

Example 5.2 Consider the nonlinear equation

{ CD%u(t) = —u+ f(t), te(0,1]

2
u(0) = uop. (5-2)

2ut

The source function is prescribed by f(¢) = /ul_"‘E 1.2—e(ut) + e“*" such that the exact

solution reads u(t) = e*!.

We use (2.17) in combination with Newton’s methqd for solving the nqnlinear equation
(5.2). Tables 3, 4, 5 and 6 show the global error |e$’l)| = |u(ty) — uﬁ(}")l and orders of
accuracy for Example 5.2 with different i and «, where 3y = 1 is fixed and At = 1/M with

M =2/, 5< j <9. Further, it is observed that |e\y"”)| = O (A=) for 1 <i <k <3.

6 Conclusions

We have proposed a class of new high-order approximations for solving time-fractional initial
value models of order 0 < « < 1. Furthermore, the local truncation error estimate in terms
of a smooth solution is presented. Additionally, stability and convergence analysis of these
numerical methods are discussed in detail. This will promote further investigation of the
proposed methods for solving time-fractional partial differential equations.
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Table 4 Errors and convergence orders of |u(fy) — u,, ’| for Example 5.2 with u = —1
o M (k,i)=(3,1) (k,i) = (3,2) (k,i) =(3,3)
lu(tpr) —upgl rate lu(tyr) — upgl rate lu(tpr) —upgl rate
0.1 32 5.97442E—09 - 4.12374E—09 - 5.22481E—09 -
64 4.22608E—10 3.82 2.53599E—10 4.02 3.70957E—10 3.82
128 2.96461E—11 3.83 1.56801E—11 4.02 2.61735E—11 3.83
256 2.06629E—12 3.84 9.72611E—13 4.01 1.83664E—12 3.83
512 1.51434E—13 3.77 5.90084E—14 4.04 1.25844E—13 3.87
0.3 32 3.63586E—08 - 2.98609E—08 - 3.32377E—08 -
64 2.85491E—09 3.67 2.18534E—-09 3.77 2.60248E—09 3.67
128 2.22890E—10 3.68 1.61522E—10 3.76 2.03176E—10 3.68
256 1.73471E—11 3.68 1.20285E—11 3.75 1.58175E—11 3.68
512 1.35003E—12 3.68 9.01168E—13 3.74 1.22508E—12 3.69
0.5 32 1.38110E—-07 - 1.27455E—-07 - 1.32024E—-07 -
64 1.23087E—08 3.49 1.10139E—08 3.53 1.17199E—08 3.49
128 1.09270E—09 3.49 9.57697E—10 3.52 1.03891E—09 3.50
256 9.68335E—11 3.50 8.36696E—11 3.52 9.20156E—11 3.50
512 8.57364E—12 3.50 7.33291E—12 3.51 8.14260E—12 3.50
0.7 32 4.71501E—-07 - 4.61657E—07 - 4.64497E—-07 -
64 4.82158E—08 3.29 4.66544E—08 3.31 4.73668E—08 3.29
128 4.91018E—-09 3.30 4.71769E—09 3.31 4.81794E—-09 3.30
256 4.99217E—10 3.30 4.77606E—10 3.30 4.89591E—10 3.30
512 5.07119E—11 3.30 4.84126E—11 3.30 4.97420E—11 3.30
Table 5 Errors and convergence orders of |u(tys) — ugf[’i)l for Example 5.2 with 1 = +/—1
o M (k,i)y=1(1,1) (ki) =(2,1) (k,i)=1(2,2)
lu(tpr) —upgl Rate lu(tyr) —upl Rate lu(tpr) —upgl Rate
0.1 32 2.54121E—-05 - 3.52358E—-07 - 8.56779E—08 -
64 7.32713E—-06 1.79 5.14268E—08 2.78 8.08705E—09 3.41
128 2.09321E—06 1.81 7.42653E—09 2.79 7.38063E—10 3.45
256 5.93428E—07 1.82 1.06282E—09 2.80 8.51842E—11 3.12
512 1.67161E—07 1.83 1.50938E—10 2.82 1.47554E—11 2.53
0.3 32 1.44121E—-04 - 2.21534E—-06 - 1.22445E—-06 -
64 4.58574E—05 1.65 3.56433E—-07 2.64 1.77215E-07 2.79
128 1.44905E—05 1.66 5.68067E—08 2.65 2.58224E—08 2.78
256 4.55432E—06 1.67 8.98792E—09 2.66 3.78933E—09 271
512 1.42539E—06 1.68 1.41404E—-09 2.67 5.59864E—10 2.76
0.5 32 4.89012E—-04 - 8.26670E—06 - 6.43523E—-06 -
64 1.75193E—-04 1.48 1.49308E—06 247 1.12324E—06 2.52
128 6.25162E—05 1.49 2.67884E—07 2.48 1.96610E—07 2.51
256 2.22470E—-05 1.49 4.78471E—08 2.49 3.44997E—08 2.51
512 7.90153E—06 1.49 8.51955E—09 2.49 6.06569E—09 2.51
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Table 5 continued

o M (k, i) =(1,1) (k,i) =2, 1) (k,i) =1(2,2)
lu(tpr) —upgl Rate lu(tpr) —upl Rate lu(tpr) —upgl Rate
0.7 32 1.47058E—-03 - 2.70727E—-05 - 2.47625E—-05 -
64 6.00118E—-04 1.29 5.55402E—-06 2.29 5.02488E—06 2.30
128 2.44431E—-04 1.30 1.13475E—-06 2.29 1.01945E—-06 2.30
256 9.94448E—05 1.30 2.31281E—-07 2.29 2.06856E—07 2.30
512 4.04305E—-05 1.30 4.70707E—08 2.30 4.19810E—08 2.30

Table 6 Errors and convergence orders of |u(tyy) — ugf[’i)l for Example 5.2 with 1 = /=1
o M (k,i)=(@3,1) (k,i)=(3,2) (k,i)=(3,3)
lu(tpr) —upgl Rate lu(tyr) —upl Rate lu(tyr) — upl Rate
0.1 32 8.71434E—09 - 4.79960E—09 - 7.47072E—-09 -
64 6.27059E—10 3.80 2.95994E—10 4.02 5.39926E—10 3.79
128 4.46205E—11 3.81 1.81797E—11 4.03 3.86592E—11 3.80
256 3.15064E—12 3.82 1.11308E—12 4.03 2.74569E—12 3.82
512 2.15830E—13 3.87 6.89707E—14 4.01 1.94223E—13 3.82
0.3 32 5.23976E—08 - 3.73908E—08 - 4.68436E—08 -
64 4.16942E—09 3.65 2.78549E—-09 3.75 3.72285E—-09 3.65
128 3.28853E—10 3.66 2.08205E—10 3.74 2.93824E—10 3.66
256 2.57840E—11 3.67 1.56249E—11 3.74 2.30683E—11 3.67
512 2.01141E—12 3.68 1.17766E—12 3.73 1.80270E—12 3.68
0.5 32 1.90898E—07 - 1.62656E—07 - 1.78745E—07 -
64 1.71443E—-08 3.48 1.42466E—08 3.51 1.60163E—08 3.48
128 1.53023E—-09 3.49 1.24931E—-09 3.51 1.42842E—-09 3.49
256 1.36106E—10 3.49 1.09734E—10 3.51 1.27023E—10 3.49
512 1.20810E—11 3.49 9.65029E—12 3.51 1.12707E—11 3.49
0.7 32 6.21914E—07 - 5.86156E—07 - 6.04267E—07 -
64 6.37330E—08 3.29 5.95612E—08 3.30 6.18239E—08 3.29
128 6.50169E—09 3.29 6.04415E—09 3.30 6.30254E—09 3.29
256 6.61800E—10 3.30 6.13212E—10 3.30 6.41338E—10 3.30
512 6.72836E—11 3.30 6.22274E—11 3.30 6.52096E—11 3.30

Acknowledgements The authors would like to thank Jason Frank and WenYi Tian for helpful discussions.
Han Zhou also thanks the support from China Scholarship Council (CSC).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

@ Springer


http://creativecommons.org/licenses/by/4.0/

J Sci Comput

A Preliminary Results for Theorems 3.1 and 3.2

Lemma A.1 Letk € Nandn > k. I , is defined by (2.13). Then it holds that

n,q
(—nHIvi =0, (A1)
if r < q. Otherwise,
(—pirarivip >0 (A2)

Proof First, if r < g, from (2.13), we have

1 ! s—q+r—1
I = 1 —s)"%d
ma = F(l—a)/o(n+ g ( r >

1 ! 7ar—l 1 s—q+r—1
:7F(]_a)/0(n+1—s) g(s_q+n)< . >ds. (A3)

Since (s —g +n) <0for0<s <landn=0,...,r — 1, weobtain (—1) (*"41""") > 0
and (—1)"H! d%(s_q':r_]) > 0. This leads to (—=1)"*'/; > 0. In addition, we can see that

r 1 ! —a - s—q—l—r—l
Vln’q = m/o ((n+1_s) —(n—s) )d( - )

—a 1 pn+l i s—q+r—1
rm ), o)

—a Lol a1 s—q+r—1
m/o /0(§+n—s) d“g‘d( . > (A.4)

where (§ +n —s)"@ ! > 0forn>1land0 < &, 5 < 1, then (—1)’+2V1,f,q > 0.
For k > 2, assume that

(—a)k—1 _ _ s—q+r—1
Vk lIr / S —k 2 g k+ldk 1 d ,
4 = Tl —a) [OHkZS tn—k+2-ys) § .

where (@)r_| =a(@ —1)--- (@ —k +2) and d*~'¢& = d&| - - - d&_;. Then
vin =Vt vl

( ) N —a—k+1 {
_ %kt _ . k=1 —q+r—
= T0a Jor (Zs,Jrn k+2 s) d §d< . )
—a—k
_ ok / / g devdt—! d(s—q—i—r—l)
L —a) Jio 1k Jns1 (l._Z]& s) S s r
—a—k
(= ) . B X s—q+r—1
= Ta=a) o (l;g,Jrn k+1 s) déd( . )

(A.5)

k

Since (}_ & +n—k+1—s)>0forn>k>1land0 < §,s < 1, we can get the result
i=1

(A.1).
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In the case r > ¢ + 1, by means of integrating by part, we get

1 ! s—q+r—1
! = 1—5)"%d
na F(l—a)/o = < r )

1
o a1 —aqtTr— 1
= 71_‘(1 — /0 n+1-—y) < . )ds.

includes a factor s(s — 1) for r > ¢ + 1, € NT, the sign of (

(A.6)

Since (s—q-rﬁ—r—l) s—q-rﬁ—r—l)

q
equals the sign of [] (s —i). Thus, from (—1) (“q;rrfl) > 0 it follows that (—1)‘1'*'1[,:"] >0

i=1
for n > 0. Furthermore, an induction process yields

( ) k —a—k—1 ]
—0)k+1 s—q+r— X
vk o= n—k+1— d*&d
T = @) Jjo, 1k (; §it+n + S) ( r ) §ds
(A7)
forn > k > 1, which proves (A.2). ]

Lemma A.2 Set
1 ! _
Sp = mfo n+1—5)"%p(s)ds, n=>0,

where ¢(s) = 0 for 0 < s < 1. Then for n > k, it holds that (—1)kV¥s, > 0.

Proof 1t is easy to verify that s, > 0 for all n > 0, since forn > 0,0 < s < 1, one has
(n+1—5)"%> 0and ¢(s) > 0. The definition of s,, implies that

1 ! —a —a
Vs, = m/o (n+1—5""=m—57"%) @(s)ds

—a 1l o
:m/o f0<"+$—s) p(s)dds,  n> 1.

Since (n + & — s)_‘)‘_1 > 0and ¢(s) > O0forn > 1and 0 < s,& < 1, we obtain Vs, < 0.
Furthermore, an induction process yields

k —a—k
(=) k
ks, = — 2 i +n—k+1— d*eds,
5= =) o e ;g n s ¢(s)d"€ds
then we can see (—1)¥Vks, > 0 forn > k. ]

Lemma A.3 ([31]) Assume that the coefficient sequence of a series a(£) isinl'. Let |&| < 1.
Then the coefficient sequence of

a(§) —a(&o)
b)=—7T"
§—&
converges to zero.
Theorem A.1 ([37,43]) Suppose that
o0 oo
f(Z) = chzn, Z lcn] < 00,
n=0 n=0
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and f(z) # 0 for every |z| < 1. Then

—_— _Zanz with Z|an| < 00.

n=0

Theorem A.2 ([3,41]) The moment problem

1
sk = / ukdow), k=0,1,...
0
is solvable within the class of non-decreasing functions iff the inequalities
(=D)"V"s >0
hold for k > m.

Lemma A .4 Assume that k € Nt and 1 < i < k. Then for each pair (k, i), the coefficient
sequence of g% (&) in (3.5) converges to zero.

Proof From the expression of V"I q shown in Lemma A.1, we have

lim V"I,
n—o0o
( a)m . “ —a—m s—q+r_1
= lim (Y& +n—m+1-s) " d"ed
T T =) Jo et nmto ;““” me s § ,
=0
or
lim V"I,
n—oo
( )1 —a—m=1/(g—qg+4+r—1 m
Crd-o [Olmﬂnlgr;o(;&—kn—m—kl—s) r d"5ds
=0
" k=1 i
for some m, ¢, r € N* independent of 7 and & > 0. Note that g = - u.,-(w,(w”k)j +
Jj=0 ’
w’gﬁ’g ]) is a finite linear combination of V”’ I ‘g with 0 < m < k if k is finite. This gives
g,(lk ) 5 0asn — oo for bounded {uj} O

Lemma A.5 For1 <i <k < 6, the coefficient sequence of %V (€) belongs to I' space.

Proof As indicated in Lemma A.1 and Lemma A .4, the following relation
k k—1 k—1 k—1
Z IV | - Z(V 11:. -V =1 q) =V I;_l’q| (A.8)

holds for p > k > 1. Therefore, by the definition of {w(k H) o2 o» We can find finite positive
integers M = M (k, i) such that
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Z‘w(kl)

Z ’wac 4)

Z S v

m=1n=m
k 1
<Z\w< FS S ]
m=1
which leads to the result. O

LemmaA.6 For 1 < i < k < 6 and || < 1, the coefficient sequence of (1 —
ki ki
£) “’()L‘%()(EO) belongs to the space I'.

Proof Using the expression of w®?) (£), we have

w®D &) — w(k’i)(Eo) (k )%—
1 _ 1
=9 §—% S)HX(:) §— 50
m=0
=(1-£) Z Zwiﬁiﬁﬂ%’sm

m=0n=0

[e'9)

_ 2 : (ki) (k,i)

- wn+lé'>:0 +§ : 2 :anerJrl n%-
n=0

m=1 n=0

On the one hand, from Lemma A.5, we find

o0
k, n k
< E w;(l+ll)||%‘o’ < E ‘a)( B
n=0

On the other hand, by the definition of {VA*+177 1% ; in Lemma A.1, it can be verified

ki
;(1+l]) 561 < 400.

that i
00 00 00 00
Z Z ’V]H_l m+n+1, q‘ Z Z (vklr:l+n+],q Vk]r';th q)
m=p n=0 m;p n=0
— Z (Vk_lly:l, Vk llr lq)
m=p
— |vk_]I‘;_1’q|

for p > k > 1. Therefore, there exist M; = M (k,i) > 1 and My = M>(k, i) > 0 such that

o0 0 ) My M; )
Z Z ‘V“)z(z]iln)wl‘ = Z Z ‘Vwr(tﬁ’—l;ﬁl‘ + Z Z Z ‘VPH m4n—+1,i

m=1n=0 m=1n=0 =1m=p n=0
M, M,
(kD) p-1;
SZZ‘an+m+l +Z v p Li|-
m=1n=0
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Combining this with

o0 o0 o0 o0 o0 o0
(k,i)en (k,i) n (ki) (ki)
ol + 3 30 Vol ] = 2o [olf ]+ 30 Do [vali.
n=0 m=1 [n=0 n=0 m=1n=0
we arrive at the conclusion. ]

Corollary A.3 For |&)| < land 1 <i < k < 6, the sequence
"0 ) — p®D (€0
§—%
belongs to I}, where the series 9%V (€) satisfy 0® D (£) = (1 — £)p®D ().

1 =80 =)

Proof Based on the definition of ¢*!) (&), we obtain

0®0 (&) — w®D (&) (1 —&)p®D (&) — (1 — &)e* (&)
(1—8) =(1-%
&§—& §—&
®“0E) — o™ (50 :
— (-8 - gt =) ki
§—%o
From the absolute convergence of the sequences (1 — &) % and w®? (&) given
in Lemma A.5 and Lemma A.6, respectively, we arrive at the result. O

B Preliminary Results for Theorem 4.1

Theorem B.1 For1 <i <k <3, 0% (&) satisfies the following conclusions:

i) 0®D() #0for|§| < 1and§ # 1;

(ii) & =1 is a simple zero.

Proof Tt can be easily verified that o*)) (1) = 0, implying that & = 1 is a zero. We rewrite
w®D (&) as

o®D(E) = (1 -5)p®D @), (B.1)

then the proof of results (i) and (ii) is equivalent to proving ¢ V) (£) # 0 for |€| < 1. In the
following discussion, we consider three situations of & separately, i.e., |§| < 1; || = 1 and
& # 1; & = 1. First, we prove the results for different k and i respectively under the condition
|§] < 1.

Case |&] < 1: Denote &€ = |£|e'?. In the case (k, i) = (1, 1), from (3.7) and (3.8), we
deduce

1
w(l’”(é)zl(é):/ ——do (),
o 1—ré&
furthermore,
(1 ! 1 !
Re(¢1@)) =/0 Re(g)do(r) :=/0 0181, )dom),
where [ (r, [§],6) = =gz iera iy In addition,
af —r|&lsind(1 — r?|g[%)

%(n |E|’ 9) = (1 — 2r|E|COSQ +r2|§|2)2
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forO0 <r <1land0 < |§] < 1implies that 0 < f(r, [§|, ) < f(r,1§],0) < f(r, 15],0).
Thus

1
1 Iy
Re((l‘l) )>/ do(r) > —.
¢ (S)_01+r|€| ()_2
In the case (k,i) = (2, 1), using (3.9), (3.10) and (3.11), we obtain

D (&) =1(&) — 212E) + (3 — &) I2(E)

—fl : d()+/13_5d(>
_ol—ré&ur ol—rfyr’
therefore,

! 1 ! 3—
Re (W»”@)) :/0 Re(1 _rs>dv(r)+/0 Re(1 _é)dy(r)

>/1101U(r)+2/1 ! d(r)+/1Re(l_$>d(r)
=Jo 147 o 1+rE o \1—rg )

Iy
>—.
2
In the case (k, i) = (2, 2), it follows from (3.12) that

ePPE) = 15,3 -8+ (L +8E) Y 17, &+ 1) =207 ().

n=0
Consequently,
1 1+¢& 1 1
Re (¢<2v2>(g)) - 1&1Re(3—§)+f0 rRe(l _r§>dy(r)+j(; Re (W) dv(r)
1
> 50+1&1.

Let

B 1+€& _1—r|§|cos@+|§|cos@—r|§|2

f(r’|§|’9)_Re(1—rg>_ 1= 2r[E|cosf + r2[E 2

P _ ; 21512y . .
Then 5 (. 51, 0) = 15 e oy implies £ [81.0) = £(r1§|.7) > 0 for 0 <

r < 1land0 < [§| < L. This means [, rRe(llffg)dy(r) > 0. In addition, we find

I§ Re(3 — &) = 215, for [£] < 1. Therefore, we obtain Re (9> (§)) = Ly Ig, > 0.
In the case (k, i) = (3, 1), using (2.14), we have
o V(E) = (1 —OIE) + (1 - TE) + (1 — 6L (),

and consequently,
eBV@E) =1E) + (1 —OIFE) + (1 -8 )
=1(&) = 3E) + (1 —EIFE) + (4 — 28 +EDI©).

Lemma A.2 and Theorem A.2 yield the existence of a non-decreasing function 1 such that

1
1,1—313,1:/ rdnp(r), n=0,1,....
0
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From Lemma A.1, we also obtain

1
131—/ r"dp@r), n=0,1,..., (B.2)

where B(r) is non-decreasing on [0, 1]. Thus,

! 1 ! 1
Re<<p(3’l)($)>:/0 Re<1_ré>dn(r)+/ Re<1 ri)dy(r)

1 2
+/ Re (ﬂ) dB(r).
0 1 —r§

Since

3-2%+6°
2
Re( T—re )

_(a—ri cos0)(3 — 2|&| cos O + |&[? cos 20) + 2r|£|* sin? O (1 — |.§|cos9)
1 —2r|&|cosO + r2|E|2

and
3 1
5 — 2lElcos6 + 1€1% cos 260 = 5 (1 — 2] cosO)? +(1— &%) >0

for |£€] < 1and 0 € R, we have

L | 51 1 1 1
Re (o@D >/7d +ff d(r) = =Ip — =13 ,.
e(w (E))_ T n(r) 2 )y T ﬂ()_2 0= 7l
In the case (k, i) = (3, 2), by (2.15), we derive

D) =1+ ZI,HSI + 1,16+ —§) Z Triaf -85,
= /=0 (B.3)
+ =87 I 08,

Jj=0

Substituting the relations 13,2 = I,i] — I, and 13,2 = I,i] — I,i] into (B.3), we find

P E =1E + 1 —HIFE) + (1 - s>Z L

j=0

—21 -5 FE + G -1 -85,

(24l 1(5)+(1—s)(12@)—2l3(€>+11(5>>
—\676 : e

+(U—E)Y 5 +6 -0 -1,
Since

1
2131+61 F(l— /(n—i-l—s)* s(1 —s)ds, n>0,
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using Lemma A.2, we obtain

1 1
1'3»1_2]’?*1+81 :/0 Mdu(r), n=0,1,... (B.4)

with p(r) being non-decreasing on [0, 1]. Therefore, from (3.8), (B.2) and (B.4), it follows

that
1 5.1 1 .
Re(p®2) (£)) = / Re(“ﬁ%)da(mr / Re(i)dw)
S g S G

1 )
+/ rReG § )dﬂ(r)+Re((3—$)(1—S))Ig,l
0 —ré

2 I
zf/ do(r) = 2.
3Jo 14rg]| 3

In the case (k, i) = (3, 3), from the relation

0VE) =1 =HUo+ 1)+ (=8 Y L2 + (1= 8)7Ug, + 1} )
j=0

F =82 1,38 + (=3, + ) + (=62 17,587,
j=0 j=0
(B.5)

it follows that

o0 o
PCVE) =Io+ 11+ LioEl + (=8 (I3, + 1) + 1 —6) Y 17, 58
j=0 Jj=0

o0
HA =& (15, + 112) + (1 =87 I3y, 5E. (B.6)
j=0
In addition, substituting the following relations
Ly=17,— I, =1, —2I,
Dy=0,-I =1 =2I; +1,, n>0
into (B.6) yields

o0
eOVE) =T+ 1+ Y L2t + (=& (15, + 1T, — Ih)
j=0

1 =) (10 —20j42) €/

j=0
s .
FA =2 (I3, + 17 = 1)+ (1 =87 (1]12,1 =207, + Ij+2> g’
j=0

=1E) + (1 —EIFE) —2(1 -5 E) + (11— &%)
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XY Iyt — B4+ ED)) I, 8

=0

+G =61 =) (I3, +13,) + (1= Y 13y &

By Lemma A.1, we find that the sequence (—13’2)2":0 is completely monotonic. Thus there
exists a non-decreasing function ¥ (r) defined on [0, 1] such that

|
_13,22/ r"dd(r), n=0,1,....
0

This yields

= )Z Fraaf = G -4 +8) Y1 58

j=0

/ (3r — r2) —4ré + (r + r)szdﬁ(r)
1—ré&

for |&| < 1. Since
((3r —r?) —4rE + (2 + r)52>
Re
1—ré&
_ Gr—=r?)(1 —r|E|cosh) +4r?|E[> — 4r|g|cos O + (r* + r)|§|* cos 20 — (r} + r?)|E]* cos O
- 1 —2r|€| cos @ + r2|€|?

= f(r €1, 0). B.7)
Taking partial differentiation with respect to 6 yields
af r|&|sin 6
—(r1§],0) = L €1, 6), B.8
5 0 = 5 o et L) (B.8)

where

g(r E1,0) = (4 +3r —r2 —4(r + DIg|cos 0 + (r* + r)|E[*) (1 — 2r|&| cos O + r2[E[%)
—2(3Br —rH)(1 — rlg| cos 0) + 4r?|&|* — 4r|&| cos b
+(r? +1)|E[* cos 20 — (° + r)[E[* cos b)) .

From
g . 2112
ﬁ(n €], 60) =41§|sin(r + 1)(1 — 2r[§|cos & +r7|§]),
it follows that g(r, |£], 0) < g(r, |&],0) < g(r, |&|, w). In addition, we see

g(r [E1,0) = (4 —3r + %) — 41+ r)|&| + (Tr +3r* + 37 —rh)g?
4 +rHIEP + (P + Yt

and
a|s| 28 (1 IEL0) = —4(1 + 1) +2(Tr 4+ 372 +37% — g — 1203 + 262
+4(3 + g (B.9)
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Since

2
ﬁ(r, 1€1,0) = r (12(r + D(r|E| — D +2(1 - r)3) >0
forO <r <1landO0 < |&| < 1, we obtain that %(r, 1£1],0) < %(r, 1, 0). Using (B.9), we
find

8—g(r, LO)=2r =3r+2)r—1) <0
91| -

for 0 < r < 1. From this it follows that %(r, €],0) < %(r, 1,0) <OforallO<r <1

and 0 < |€| < 1. Then we finally obtain
g(r, 1£1,0) > g(r, 1,00 =0, 0=<r=<1, 0|8 <.

Hence, it holds that g(r, |, 0) > g(r,1£],0) > Ointhecases0 <r < 1land 0 < |§| < 1.
From formula (B.8), we have f(r, |£],0) < f(r, |&],0) < f(r, |E], ) forall0 < r < 1and
0 < |&€| < 1. The definition of f(r, |£|, 6) in (B.7) yields

r—r?—4rlE| + 75 + rig )
1 —rlg|

Taking its partial derivative with respect to |£|, we obtain

af r
g0 = —
aig) " IE O = T
r
= _hr ).
D

The inequality %(r, ED > 2(1 —r?) = 0for 0 < r < 1 with A(r, 1) = —2(1 —
N2 <0 yields h(r, |€]) < h(r,1) < 0 for 0 < r < 1. Consequently, in combination with
%(h €], 0) <0, we have f(r, [§],0) > f(r,1,0) forO <r < 1and 0 < |§| < 1. Further,
from f(r, 1,0) = 0, it follows that

3
f(r,181,0) =

(=4+43r — 2 420 + DIE| = 2+ 1)IEP)

f@r151,0) = f(r,[§],0) =0, VO=r=1, [§|<1, 6€eR.

Therefore,
1 5.1 1 _ 1 )
Re(p® (&) = / Re(6+6g>da(r)+ / Re(———")dpu(r) + f rRe(-—% )dB(r)
0 1 — I‘S 0 1 — l’é;' 0 1 — rE

N /1 Re ((3r —r?) —4rg + (2 + r)g?
0 1—ré&
+Re (B -6 —E) U3, + 1)

2 1 I
> do(r) = —,
3Jo 14rlg| 3

where the last inequality follows from the fact that I&] + 113,2 = % > 0 for all
O0<a<l. A A
Case & = 1: assume that ¢*-)) (1) = 0, from the definition of ¢*-9(£), we find

g0 @) =1E) +1%0 @), (B.10)

) dv(r)
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where 19 (&) are absolutely convergent series. The definition of the coefficients of 7 (&)
yields that Y7 I; is arbitrary large as increasing n. However, the boundedness of 150D (1)
contradicts (B.10) with & = 1, which shows ¢*9 (1) £ 0.

Case |£] = 1 and & # 1: from Corollary A.3, it follows that ¢ (£) is pointwise
continuous for || < l excepté = 1.1If§, = (1 — %)5 with |€,| < 1 forall n € NT, then
&0 (&) are the limit points of the sequences ¢ %) (&,). Further, there exist positive constants
c¢®D_ which are independent of n, such that

Re(p(€) = lim Re(p™" (&) = ",

LemmaB.l Let 1 <i <k <3and0 <m <k — 1, {s\3))°°, are defined in (4.6). Then

there exist bounded constants cf,, D=0 independent of n and o such that

(k.i)  —a k.i)  —a—1

B (k’)|_7n Is (kl)|_w (B.11)
rd—a)’ IT'(—a)

forn>1andm > 1.

Proof Itis known from (2.13) that for any finite ¢, » € NT, I _is bounded for n € Z. Since

Ay g
the coefficients s,(ll_{,’,ll) are denoted as the linear combinations of I,f ¢» We can immediately

obtain the boundedness of s,(,k,’,i) for all integer n > 0.

Moreover, for1 <i <k <3, s(k D can be expressed as a linear combination of /; and 1]

with! = nand | < r < 3. Using formulae (A.3) and (A.6), we obtain I, = O (y=g; ) and

1 =0 (F(aal)) (F(l a)) for r > 2 and n > 1. This implies that there is a uniform
(ki) —o

bound independent of n, denoted by c(k DS 0, such that |s(k ’)| < Cg a "a) forn > 1.
In terms of m > 1, observe that sn,m) are the linear combinations of V1, I/ and V71,

forl/ >n+1,r > 2and 1 < p < 3. From formulae (A.4) and (A.7), we know that
— =771\ _ ! — (n=—p)= P\ _
Vi, = 0 (") = O(F( a)) and VP17 | = 0 ($2= ) = o (i) for

r > 2, therefore we get s(k D_0 il (:1) ) and hence there exist constants c,(n D' S 0 such
that the last inequality of (B.11) holds. O

Lemma B.2 Assume that {g,(lﬂ)};’lo:o are generated by the series (1 — )P for B € R, i.e.,

(1-8Ff = Z( " () Zg“” (B.12)
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Then the following relations hold

Be=10: gl =1, g >g > >0
Zg(ﬁ)—gflﬂ D, on=0;

Be@1): (ﬂ)=1 g? <0, n>1, (B.13)
1> 18P > 18P > . = 0,

Zgw) 0. Zgw) — ¢V pxo0.

From (B.1), we set

o*0E) =1 - )y E) (B.14)

forO <o < 1,and
vEDE) = 1 -t e (B.15)

Note that (B.14) implies a relation between the proposed methods and the fractional Euler
method mentioned in [30]. In the following part, we discuss some relevant properties of the
series 1//("*’) ).

Lemma B.3 For 1 <i <k < 6, the coefficient sequence of *-) (&) belongs to the space
1.

Proof Using the expressions of ¢ ) (¢) presented in Theorem B.1, we obtain

e®D(E) = 1(5) + 10D (&), with Y 1] < 0. (B.16)
n=0

Together with (B.15), it follows that
e =1 - 1E + 1 - @),

Therefore, it suffices to prove that the coefficient sequence of (1 — & Y=g belongs to / L
From the definition of Gamma function

nb

r'p) = — B#0,-1,-2,...,
n—>oo( 1)n( )( +[3)

we obtain the asymptotic relation

LT i B.17
F(ﬂ):(—)(rl), as n — oo, (B.17)

where the notation = means that (n”~!/T'(8)) /(—1)" (_f ) = lasn — oo. Furthermore,
it is known from [16,31] that
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e _nﬂ—l B—1
(D)-gmleo() e

Also, the definition of [, yields that [,, = % asn — 0o, and

—(X

'l —o)

n

1 > !
= Ta _a)Z/O (nfo‘—(n+1—s)7°‘)ds
l—s &

—a—1
m_a)// ”z:}(n—l—t) drds
—a—1
= F(l—a) Z"

n=1

« * —a—1
“Ti-w (H/l g dx)

a+1

o0
> -
n=1

- . B.19
Fl—a ~ ™ (B-19)
Combine this with (B.18), we get
o0
L=V +v,,  with Y |v,] < oo (B.20)
n=0

Hence,

(1-6)'"1@) = Z(Zg“ ) )

n=0 \k=0

in combination with the relation

o0 n
1— 1— -1
>3 A = 2 3l (s )
n=0 lk=0 n=0 lk=0
o0 n o0 n
(I—a) (a—1) (I—a)
Z At A E B D IF
n=0 k=0 n=0 k=0
[e.¢]
<1+ Z g8 1) " lukl < o0
n=0 k=0
yields the result. O

Lemma B.4 Let | <i <k < 3. Then it holds that % (&) # 0 for any || < 1.

Proof In the proof of Theorem B.1, we know that e*D(E) £O0forall £ <land 1 <i <
k < 3.Forany |&| < 1, (1—&)'~% islocated within the sector Sy = {z : |arg(z)| < W}.
In addition, note that (1 — £)' =% = 0 if and only if £ = 1. Thus, it remains to find the value
of (1 — 5)1_"‘<p(k’i)($) at & = 1. Indeed, from formulae (B.16) and (B.20), we have
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Zzg(l @) g _Zzg(l—a)( fa- 1)+vl+ll(k,i)>

n=01=0 n=0 1=0
(@]
1- -1 1- k,i
= S Y (a4
n=0 1=0 n=0 1=0
[e.¢] o0 .
1 Y0 Y () = 1
n=0 =0
where the last equality holds based on Lemma B.2. O

As a result, from Theorem A.1, Lemmas B.3 and B.4, we obtain that for 1 <i <k <3
and 0 < a < 1,if

1 s )
llf(k’)(%') =r*) = erlk’l)gna (B.21)

then there exist bounded positive constants My G.) , such that Z |r(k ')| o(tk’i) .

n=0
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