Genetic algorithm with iterated local search for solving a location-routing problem (2012)
by Houda Derbel, Bassem Jarboui, Saïd Hanafi, Habib Chabchoub

L.T. van Binsbergen S. Fafianie J.P. Pizani Flor

Department of Information and Computing Sciences
Utrecht University

Monday 7th January, 2013
Table of Contents

Problem Description
 Problem Definition
 Related Work
 Hybrid Approach

Genetic Algorithm
 Solution Representation
 Parent selection
 Genetic Operators

Iterated Local Search
 High-level description
 Neighborhood structures
 Perturbation

Conclusions and Comparison
 Test instances
 Comparison
 Conclusions
Problem Description
Problem Definition

- Location Routing Problem (LRP)
- set of customers \(I = \{1, \ldots, n\} \)
- set of potential depots \(J = \{1, \ldots, m\} \)
- limited capacity \(b_j \) and fixed cost \(f_j \)
- non-negative demand \(d_i \)
- travelling cost \(c_{ij} \)
Problem Definition

- each depot has a single incapacitated vehicle
- vehicle begins and ends its route at its depot
- find a subset of depots to be opened
- elaborate vehicle tours to meet customer demands
- minimize total cost of location and delivery
Related Work

- combination of Vehicle Routing Problem (VRP) and Facility Location Problem (FLP)
- branch and bound method - Laporore and Norbert (1981)
 - single-facility LRP
 - no tour length restrictions
- branch and cut method - Laport, Norbert and Arpin (1986)
 - capacitated vehicles and depots (CLRP)
 - fixed number of vehicles
- heuristic approaches
 - simulated annealing - Wu, Low and Bai (2002)
 - greedy randomized adaptive procedure (GRASP)
 - tabu search - Albreda-Sambola et al. (2005)
Hybrid Approach

- Genetic Algorithm
 - population of solutions may lead to global optimum
 - sub-optimal solutions are not improved fast enough

- Iterated Local Search
 - find local optimum quickly
 - may not find global optimum

- hybrid approach maximizes the chance of convergence to an optimal solution by using various search spaces
Hybrid Approach

- generate and evaluate random population of solutions
- in each cycle:
 - select parents x_1 and x_2
 - apply crossover to x_1 and x_2 to generate child x_{new}
 - apply mutation to x_{new}
 - apply ILS to x_{new} if $\text{fitness}(x_{new}) < (1 + \delta) \cdot \text{fitness}_{best}$
 - select fittest
Genetic Algorithm
Solution Representation

- solution x is represented by:
 - $A(x) = \{a_1, \ldots, a_n\}$ assignment configuration
 - $a_i = j$ means costumer i is assigned to depot j
 - $P(x) = \{p_1, \ldots, p_n\}$ rank of a costumer on a given route
 - customer p_i is served before $p_{i'}$ if $i < i'$
Solution Representation

\[A = 3 \ 1 \ 2 \ 3 \ 2 \ 1 \ 2 \ 3 \]
\[P = 6 \ 2 \ 3 \ 1 \ 5 \ 8 \ 7 \ 4 \]

Fig. 1. An example of LRP solution representation.
Parent Selection

- $P([k]) = \frac{2^k}{M(M+1)}$
- $[k]$ is the kth chromosome in descending order
- M is the population size
Crossover operator

- 1-point crossover for the assignment configuration A
- 1-point order crossover for the permutation configuration P:

![Diagram of crossover operation for the permutation vector.](image)

Fig. 2. Crossover operation for the permutation vector.
Mutation

Assignment configuration

- Mutating A by randomly changing an assignment to any other depot
- Possibly introducing a new depot, or removing one
- Performed according to a probability distribution P_a

Permutation configuration

- Mutation on P is performed by taking a random customer and inserting it at a random position
- Shifting other customers towards the old location of the customer
- Performed according to probability distribution P_p
Fitness function

- \(\text{fitness}(x) = \text{cost}(x) + \text{penalty}(x) \)
- \(\text{cost}(x) \) is the sum of all the driving and depot costs
- \(\text{penalty}(x) = \sum_{j \in J} \alpha \max\{0, D_j(x) - b_j\} \)
Replacement

- The newly created child is compared to the worst in the current population
Iterated Local Search
ILS structure

Algorithm 1 General structure of the used ILS

Require: \(x_0 \) is an initial solution

\[
\hat{x} \leftarrow \text{localsearch}(x_0)
\]

repeat

\[
\begin{aligned}
x & \leftarrow \text{perturbation}(\hat{x}) \\
\tilde{x} & \leftarrow \text{localsearch}(x) \\
\text{if} \quad \text{fitness}(\hat{x}) < \text{fitness}(\tilde{x}) \quad \text{then} \quad \hat{x} \leftarrow \tilde{x}
\end{aligned}
\]

until Termination condition is met
Local search method used

Algorithm 2 General structure of the local search method used

Require: an initial solution x

$x_1 \leftarrow$ first improvement on x using neighbourhood $\mathcal{N}1$

$x_2 \leftarrow$ first improvement on x_1 using neighbourhood $\mathcal{N}2$

$x_3 \leftarrow$ first improvement on x_2 using neighbourhood $\mathcal{N}3$

$x_4 \leftarrow$ first improvement on x_3 using neighbourhood $\mathcal{N}4$

if $\text{fitness}(x_4) < \text{fitness}(x_1)$ then

$x \leftarrow x_4$

Go to line 1

end if
Neighbourhood structures

Four structures were used:

- **N1 and N2**: involving 2 routes
 - N1: swap two customers

 ![Diagram of N1](image1)

 ![Diagram of N2](image2)

 - N2: move customer from one route to another

 ![Diagram of N1 applied](image3)

 ![Diagram of N2 applied](image4)
Neighbourhood structures

Four structures were used:

- N3 and N4: intra-route
 - N3: swap two customers
 - N3: swap two customers
 - N4: move customer to another position in the route

![Diagram of initial solution and neighboring solution in N3(x)](a) initial solution x (b) neighboring solution in N3(x)

![Diagram of initial solution and neighboring solution in N4(x)](a) initial solution x (b) neighboring solution in N4(x)
Perturbation criterion

- Local moves concern only open depots
- Perturbation opens new depots, preserving variability
- Perturbation criterion:
 - Select a random open depot
 - Move the customer assigned from the original depot to another (open or closed) one.
 - Affects only configuration A of each chromosome (assignment)
Conclusions and Comparison
Test instances

- Benchmarks proposed by Albreda-Sambola et al. (2005)
- Five sets of instances: S1, S2, S3, M2, M3
 - S1, S2 and S3: 5 facilities, 10, 20 and 30 customers
 - M2 and M3: 10 facilities, 20 and 30 customers
- Instances further parameterized by 2 other variables:
 - R_1: Ratio between total customer demand and total depot capacity
 - R_2: Value proportional to the fixed cost of opening a depot
Parameter setting

- **Generic parameters:**
 - Population size (M): 40
 - Mutation probability on configuration A (P_p): 0.7
 - Mutation probability on configuration P (P_p): 0.9
 - *Penalty* constant used in fitness evaluation (α): 1000

- **ILS parameters:**
 - δ coefficient: 0.1 (ILS used rarely)
 - Termination condition: 100 successive iterations with no improvement
Comparative study

- Execution results compared with best-known solutions
- Best-known solutions: Albreda-Sambola et al. (2005), using *tabu search*
- Two dimensions were measured in the experiment:
 - %gap: average deviation of found solution to the a-priori lower bound (global optimum)
 - *Time*: running time over ten instances
- *t-test* done over %gap to verify the divergence between the two scenarios
Experimental results

Some notable results from the comparative study:

- **S1**: GA&ILS finds all optima and beats TS in running time, but pure ILS comes close (\%gap) in less time.
Experimental results

Some notable results from the comparative study:

- **S1:** GA&ILS finds all optima and beats TS in running time, but pure ILS comes close (%gap) in less time.
- **S2:** GA&ILS has slightly smaller %gap than pure ILS, both much better than TS
Experimental results

Some notable results from the comparative study:

- **S1**: GA&ILS finds all optima and beats TS in running time, but pure ILS comes close ($\%gap$) in less time.
- **S2**: GA&ILS has slightly smaller $\%gap$ than pure ILS, both much better than TS
- **M3 (largest)**: ILS beats TS completely and GA&ILS slightly in terms of $\%gap$, TS has around 10x larger running time than both others.
Experimental results

Some notable results from the comparative study:

- **S1**: GA&ILS finds all optima and beats TS in running time, but pure ILS comes close (%gap) in less time.
- **S2**: GA&ILS has slightly smaller %gap than pure ILS, both much better than TS
- **M3 (largest)**: ILS beats TS completely and GA&ILS slightly in terms of %gap, TS has around 10x larger running time than both others.
- **t-test (%gap)**: ILS and GA&ILS beat TS with error risk close to 0. GA&ILS beats pure ILS with error risk of 15%.
Conclusions

- Hybridization between GA and ILS to solve the LRP efficiently
 - ILS improves each generation outputted by the GA
 - Genetic operators AND neighbourhood structures take into account location and routing *simultaneously*
Conclusions

- Hybridization between GA and ILS to solve the LRP efficiently
 - ILS improves each generation outputted by the GA
 - Genetic operators AND neighbourhood structures take into account location and routing simultaneously
- Proposed algorithm was compared to five problem sets from the literature
 - Improves over best-known approach (TS) both in quality of solutions and in computational requirements
Conclusions

- Hybridization between GA and ILS to solve the LRP efficiently
 - ILS improves each generation outputted by the GA
 - Genetic operators AND neighbourhood structures take into account location and routing *simultaneously*
- Proposed algorithm was compared to five problem sets from the literature
 - Improves over best-known approach (TS) both in quality of solutions *and* in computational requirements
- Authors suggest applying VNS (Variable Neighbourhood Search) combined with GA as future study