
Knapsack

The Knapsack problem is defined as follows. We are given a set of n items and a knapsack
with a given volume B. Item j (j = 1, . . . , n) has a given weight aj and value cj . We are
asked to find a subset of the items with maximum value such that the total weight of the
selected items amounts to no more than B. Without loss of generality, we assume that all
items have a weight that is no more than B and that all values are positive.

We can formulate the Knapsack problem as an ILP as follows. For each item j (j =
1, . . . , n) we introduce a binary variable xj , where xj = 1 indicates that we select item j, and
xj = 0 indicates that we do not put item j in the Knapsack. This leads to the following ILP

max
n∑
j=1

cjxj subject to

n∑
j=1

ajxj ≤ B,

xj ∈ {0, 1} for j = 1, . . . , n.

We obtain the LP-relaxation by replacing the integrality constraints xj ∈ {0, 1} (j = 1, . . . , n)
with 0 ≤ xj ≤ 1 (j = 1, . . . , n).

The Lagrange relaxation is a different form of relaxing the problem. Here we determine
a set of ‘nasty’ constraints, the presence of which complicates solving the problem. For each
one of these constraints we define a Lagrangean multiplier. We then remove these constraints
one by one, and add the difference between the right- and lefthand-side to the objective
function, weighed by the Lagrangean multiplier. For the Knapsack problem, we select the
‘weight’ constraint and remove it, where we use λ as the Lagrangean multiplier. This yields
the following problem:

max
n∑
j=1

cjxj + λ(B −
n∑
j=1

ajxj) subject to

xj ∈ {0, 1} for j = 1, . . . , n.

It is readily verified that the solution of this problem, which is called the Lagrangean relax-
ation, yields an upper bound, if we assume that λ ≥ 0; therefore, we request that λ ≥ 0. The
resulting upper bound is defined as L(λ). We can interpret this relaxation as follows: we can
buy additional space at a cost of λ per unit, and we can sell unused space at a price of λ per
unit. Hence, we can interpret that space has a value of λ per unit.

For a given value of λ, the Lagrangean relaxation is solved as follows. Since the term λB
is constant, we ignore it. Rewriting the remainder of the objective function yields

max
n∑
j=1

(cj − λaj)xj ,



which has to be maximized subject to the constraint that each item should be selected or
left out of the knapsack. Obviously, it is advantageous to select item j if cj − λaj > 0 and
ignore it if cj − λaj < 0; if cj − λaj = 0 we can go either way. This rule fully complies with
the observation that one unit of space has a value of λ.

Since we find an upper bound for each value of λ, as long it is nonnegative, we want
to find the value of λ that leads to the tightest upper bound. This problem is called the
Lagrangean dual problem, which is defined as

min
λ≥0

L(λ).

Theorem The function L(λ) of λ is piecewise-linear, continuous, and convex.
Proof. Let Ω denote all possible subsets of the items. Let S denote any subset of the items,
and let a(S) and c(S) denote the total weight and the total value of the items in S. Then we
have that

L(λ) = max
S∈Ω

c(S) + λ(B − a(S)).

Since c(S) + λ(B − a(S)) is a linear function in λ, we find that L(λ) is the maximum of a
finite set of linear functions, which implies that it is piecewise-linear, continuous, and convex.

Since L(λ) is convex, we know that any local minimum will be a global minimum. Renumber
the items such that

c1

a1
≥ c2

a2
≥ · · · ≥ cn

an
.

We start with λ = 0 and we increase λ as long as the set of items selected to maximize L(λ)
does not change; from the discussion above, we know that this set will remain the same for
any λ ∈ [

ck+1

ak+1
, ckak ]. Since in that interval it is optimal to select the items 1, . . . , k, we find

that then

L(λ) =
k∑
j=1

cj + λ(B −
k∑
j=1

aj).

Hence, L(λ) increases if B −
∑k
j=1 aj > 0 and decreases if B −

∑k
j=1 aj < 0. Therefore, we

find that the value of λ that solves the Lagrangean dual problem is equal to ck
ak

, where k is
such that

k−1∑
j=1

aj < B ≤
k∑
j=1

aj .

If λ < ck
ak

, then it is optimal to select at least the items 1, . . . , k, and hence increasing λ de-
creases the value of L(λ); if λ > ck

ak
, then it is optimal to select at most the items 1, . . . , k−1,

and hence we can decrease the value of L(λ) by decreasing λ. If we find that
∑k
j=1 aj = B,

then the value of the Lagrangean dual problem is equal to the value of the ILP formulation
of the Knapsack problem, which implies that we have found an optimal solution then.



Theorem Geoffrion
The outcome value of the Lagrangean dual problem is less than or equal to the outcome
value of the LP-relaxation. When in the Lagrangean relaxation (that is, for a given λ) the
integrality constraints are redundant, then the outcome values are equal.

Clearly the integrality constraints are redundant, and hence we find that according to the the-
orem by Geoffrion the solution values of the Lagrangean dual problem and the LP-relaxation
are equal. This can be shown by simply calculating both values. Let λ∗ = ck

ak
denote the

optimum Lagrangean multiplier, where k is defined as the smallest number such that taking
the first k items (after renumbering) fills the knapsack completely. Hence, we find that the
value of the Lagrangean dual problem is equal to

L(λ∗) =
k−1∑
j=1

cj + λ∗(B −
k−1∑
j=1

aj).

If we solve the LP-relaxation, then we find that we can select the items 1, . . . , k − 1 entirely,
and we can take a fraction of item k with a total weight of B−

∑k−1
j=1 aj . Hence, we find that

the optimal solution of the LP-relaxation is then equal to

k−1∑
j=1

cj + ck
(B −

∑k−1
j=1 aj

ak
) ,

which is clearly equal to L(λ∗).


