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3.1 PROPERTIES OF EASY PROBLEMS

Here we plan to study some integer and combinatorial optimization problems
that are “well-solved” in the sense that an “efficient™ algorithm is known for
solving all instances of the problem. Clearly an instance with 1000 variables
or data values ranging up to 10%° can be expected to take longer than an
instance with 10 variables and integer data never exceeding 100. So we need
to define what we mean by efficient.

For the moment we will be very imprecise and say that an algorithm on
a graph G = (V, E) with n nodes and m edges is efficient if, in the worst
case, the algorithm requires 0(mP) elementary calculations (such as additions,
divisions, comparisons, etc) for some integer p, where we assume that m > n.

In considering the COP max{cz : € X C R"}, it is not just of interest
to find a dual problem, but also to consider a related problem, called the
separation problem .

Definition 3.1 The Separation Problem associated with COP is the problem:
Given z* € R", is * € conv(X)? If not, find an inequality 7z < =g satisfied
by all points in X, but violated by the point z*.

Now, in examining a problem to see if it has an efficient algorithm, we will
see that the following four properties often go together:

(i) Efficient Optimization Property: For a given class of optimization problems
(P) max{cz : z € X C R"}, there exists an efficient (polynomial) algorithm.
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(ii) Strong Dual Property: For the given problem class, there exists a strong
dual problem (D) min{w(u) : u € U} allowing us to obtain optimality condi-
tions that can be quickly verified:

£° € X is optimal in P if and only if there exists u* € U with cz* = w(u*).

(iii) Efficient Separation Property: There exists an efficient algorithm for the
separation problem associated with the problem class.

(iv) Ezplicit Convez Hull Property: A compact description of the convex hull
conv(X) is known, which in principle allows us to replace every instance by
the linear program: max{cz : z € conv(X)}.

Note that if a problem has the Explicit Convex Hull Property, then the
dual of the linear program max{cz : z € conv(X)} suggests that the Strong
Dual Property should hold, and also using the description of conv(X), there
is some likelihood that the Efficient Separation Property holds. So some ties
between the four properties are not surprising. The precise relationship will
be discussed later. In the next sections we examine several classes of problems
for which we will see that typically all four properties hold.

3.2 IPS WITH TOTALLY UNIMODULAR MATRICES

A natural starting point in solving integer programs :
(IP) max{cz : Az < b,z € Z}}

with integral data (A,b) is to ask when one will be lucky, and the linear
programming relaxation (LP) max{cz : Az < b,z € R% } will have an optimal
solution that is integral.

From linear programming theory, we know that basic feasible solutions
take the form: z = (zg,zn) = (B~!b,0) where B is an m x m nonsingular
submatrix of (A,) and I is an 7 x m identity matrix.

Observation 3.1 (Sufficient Condition) If the optimal basis B has det(B) =
+1, then the linear programming relaxation solves IP.

Proof. From Cramer’s rule, B! = B*/det(B) where B* is the adjoint
matrix. The entries of B* are all products of terms of B. Thus B* is an
integral matrix, and as det(B) = +1, B~ is also integral. Thus B lbis
integral for all integral b. =

The next step is to ask when one will always be lucky. When do all bases or
all optimal bases satisfy det(B) = +1?

T nRnitinn 29 A matriv 4 ic fatalln unimoduler (TU) if every square sub-
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Table 3.1 Matrices that are not TU

TR 01000
S e 01111
R 10111
o 10010

10000

Table 3.2 Matrices that are TU

First we consider whether such matrices exist and how we can recognize them.
Some simple observations follow directly from the definition.

Observation 3.2 If A is TU, a;; € {+1, 1,0} for all 4, j.

Observation 3.3 The matrices in Table 3.1 ar t T i i
e 3 8 e not TU. The matrices in

mu.novom#mon 3.1 A matriz A is TU if and only if
(i) the transpose matriz AT is TU if and only if
(ii) the matriz (A,I) is TU.

There is a simple and important sufficient condition for total unimodularity,
that can be used to show that the first matrix in Table 3.2 is TU.

mu._.owoﬂﬁo: 3.2 (Sufficient Condition). A matriz A is TU if

E a;; € {+1,-1,0} for all i,j.

«:\ Each 8::.:: contains at most two nonzero coefficients (3=, |ai;] < 2).

MMNQ Hﬁma QMS? a partition (My, M3) of the set M of rows such that each
umn j containi ] ]

gy J aining two nonzero coefficients satisfies 3-,c py @ij — e pr, Bis

Proof. Assume that A is not TU, and let B be the smallest square submatrix
of A for which det(A) ¢ {0,1,-1}. B cannot contain a SEME with a single
nonzero entry, as otherwise B would not be minimal. So B contains two
nonzero entries in each column. Now by condition (iii), adding the rows in
M, and subtracting the rows in M, gives the zero vector, and so det(B) = 0
and we have a contradiction. h

Note that condition (iif) means that if the nonzeros are in rows i and k, and

= B ASRTE A o

Ay A e

i o A g G - i, b Bt .l 0 L 7 X

e

e

» i et s e

W L A



R

A

e
Poit

40 WELL-SOLVED PROBLEMS

and k € M,, or vice versa. This leads to a simple algorithm to test whether
the conditions of Proposition 3.2 hold. In the next section we will see an
important class of matrices arising from network flow problems that satisfy
this sufficient condition.

Now returning to I'P, it is clear that when A is TU, the linear programming
relaxation solves I P. In some sense the converse holds.

Proposition 3.3 The linear program max{cz : Az < b,z € R%}} has an
integral optimal solution for all integer vectors b for which it has a finite
optimal value if and only if A is totally unimodular.

On the question of efficient algorithms, we have essentially proved that for
the IP: max{cx : Az < b,z € 27} with A totally unimodular:

(a) The Strong Dual Property holds: the linear program (D) : min{ub : ud >
c,u > 0} is a strong dual.

(b) The Explicit Convex Hull Property holds: the convex hull of the set of
feasible solutions conu(X) = {Az < b,z > 0} is known.

(¢) The Efficient Separation Property holds: the separation problem is easy
as it suffices to check if Az* <band z* 20.

Given that these three properties hold, we have suggested that the Effi-
cient Optimization Property should also held, so there should be an efficient
algorithm for IP. This turns out to be true, but it is a nontrivial result bey-
ond the scope of this text. This is in turn related to the fact that efficient
algorithms to recognize whether a matrix A is TU are also nontrivial.

3.3 MINIMUM COST NETWORK FLOWS

Here we consider an important class of problems with many applications lying
at the frontier between linear and integer programming.

Given a digraph D = (V, A) with arc capacities hi; for all (5,7) € A,
demands b; (positive inflows or negative outfiows) at each node i € V, and
unit flow costs ¢;; for all (i, §) € A, the minimum cost network flow problem
is to find & feasible flow that satisfies all the demands at minimum cost. This
has the formulation:

min M CijTij (3.1)
(1.1)€A
M Tik — M Ty =biforieV (3.2)
keV +(i) kEV-(i)
0<zi; < ?Q for ?...u.v €A Aw.wv

where z;; denotes the flow in arc (i,), V(i) = {k: (i,k) € A} and V~(§) =
{k: (k,i) € A}.
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It is evident that for the i
problem to be feasil
s i e o S.o ble the total sum of all the

Example 3.1 The digraph in Figure 3.1 leads to the following set of balance

Fig. 3.1 Digraph for minimum cost network flow

equations:

e
12 Ti4 T3 T3l T3z Tas ZTig Tes T I53 Zgs

1 1 0-1 0 0 0 0-1 0 o
-1 0 1 0-1 0 0 0 0 0 o
0 0 -1 1 1 1 1 0 0 -1 o
6 -1 ¢ 0 0 0 0 1 0 0 o
0 0 0 0 0 -1 0 -1 1 1 -1

The additional constraints are the bound constraints: 0 < zi; < hy;.
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Proposition 3.4 The constrai :
o traint matriz A erising in a mini
work flow problem is totally unimodular. ! B

Proof. Th i i ¢
e matrix A is of the form I where C comes from the flow

conservation constraints, and I from the upper bound constraints. Therefore

it suffices to show that C is TU i -
are satisfied with M; = M and EM._H w:Bamun conditions of Proposition 3.2

Corollary In & minimum cost netw
k fl i
an i et (o) are integn n._m. ork flow problem, if the demands {5}
Mcv Each extreme point is integral.
ii) The constraint: ¥ .
flows. o 8 (3.2)-(3.3) describe the convex hull of the integral feasible



