Column generation models

The Beunhaas problem

\square Beun de Haas is an independent entrepreneur.
\square Clients contact him for small jobs.
\square Planning period: days 1, . . , T.
\square For each job j is given:
\square the reward (c_{j});
\square the time it takes (a_{j});
\square Beun has Q time on each day
\square Goal. Choose and plan the work to earn as much as possible.

First: a simple model

Advanced ILP formulation

\square Formulation with day plans.
\square A day plan for day t is a set of jobs that Beun can do on day t.
$\square S$ is the set of feasible day plans

- The reward of day plan p is equal to C_{p}
\square Use a binary variable:
$\square \mathrm{x}_{p}=1$ if day plan p from S is chosen, 0 otherwise

This is the Master problem

ILP with day plans

Disadvantage: solving ILP may take a long time

Solution: relax integrality constraints, LPrelaxation.
Maybe fractional solution
\square Upperbound

ILP with day plans (2)

Disadvantage: There are so many possible day plans
Solution: Consider only interesting day plans Column generation.

Column generation for LP

1. Start with Restricted Master Problem: a small set of day plans
2. Solve LP-relaxation.
3. Find out if there is a new dayplans that can improve the solution (= pricing)
4. No \Rightarrow optimum found
5. Yes \Rightarrow add plan to model and go to 2 .

Pricing= (Lagrangean) subproblem

\square Finding out if there are day plans to improve solution
\square Recall: variable can improve solution if and only if reduced cost are positive
\square Pricing problem:
\square Find day plan with maximal reduced cost

- If maximum > 0, add day plan
- Otherwise stop
- Knapsack problem

Solved by dynamic programming

The Beunhaas problem: generalization

\square Beun de Haas is an independent entrepreneur.
\square Clients contact him for small jobs.
\square Planning period: days $1, \ldots, \mathrm{~T}$.
For each job j is given:
\square the reward (c_{j});

- the time it takes (a_{j});
\square the days on which they can be done,
$\square J_{t}$ set of jobs that available on day t
Beun has Q_{t} time on day $\mathrm{t}(\mathrm{t}=1, \ldots, \mathrm{~T})$.
\square Goal. Choose and plan the work to earn as much as possible.

Beun de Has

Day	Working time
Monday	6 hours
Tuesday	8 hours
Wednesday	4 hours
Thursday	8 hours
Friday	4 hours

Job	Duration	Revenue	Days
1	2 hours	5	Mon, wed, fri
2	3 hours	6	Mon, tue, thu
3	2 hours	4	Wed, thu, fri
etc	$\ldots .$.	$\ldots .$.	$\ldots .$.

Column generation: Ping-pong

Column generation $=$ cutting plane algorithm in dual

Primal:

- Restricted problem has limited set of variables
- Pricing problem: find variable that improves current solution (use reduced cost)
Column generation

Dual

- Restricted problem has limited set of constraints
- Separation problem: find constraint that violates current optimal solution

Cutting plane algorithm

Gate assignment at Schiphol

Gate assignment at Schiphol

We have a set of flights:
\square Arrival and departure time
\square Type of aircraft
Region of origin/destination (Schengen/EU/Non-EU)

- Preferences of airline

Ground handler

And we have a set of gates
\square Possible regions (Schengen/EU/Non-EU)

- Possible aircraft
\square Possible ground handlers

Gate assignment at Schiphol (2)

Goal:
\square find assignment one day ahead

- maximize robustness
that satisfies:
\square region constraints
\square aircraft constraints
\square ground handler constraints
\square time constraints
\square preferences

Gate assignment at Schiphol (3)

Cost of non-robustness is function of separation time between two flights
\square High for small separation times

- Low for long separation times
\square Descending steeply in beginning

$$
\begin{aligned}
& t_{v, w}^{s e p}=t_{w}^{\text {arrival }}-t_{v}^{\text {departure }} \\
& C=\sum_{v, w \text { consecutive flights on the same gate }} c\left(t_{v, w}^{s e p}\right) \\
& c\left(t^{s e p}\right)=1000\left(\arctan \left(0.21\left(5-t^{s e p}\right)\right)+\frac{\pi}{2}\right)
\end{aligned}
$$

Refinements:
\square Certain combinations of flights are more desirable
\square Certain assignments are less desirable

Gate plans

\square Distinguish only between gate types (not between individual gates): set of gates with the same ground handler, security region, aircraft size

- Gate plan for gate of type a:
- Set of flights assigned to the same gate
\square All fights must be allowed on gate of type a
Time between two consecutive flights must be at least 20 minutes
- Cost of gate plan = cost due to corresponding separation times
\square Decision variable $x_{i}=0 / 1$ if gate plan i is (not) selected.

Gate assignment: decomposition model

- Master problem:
- Variables are plans for one gate
- Each flight is on exactly one gate
- Flight assigned to gate of correct type
- Preference constraints and other
- Maximize robustness

Subproblem:

- Feasible plans for one gate
- All flights are allowed on the type of gate under consideration
- At least 20 minutes between two consecutive flights.
- Solved as shortest path problem on directed acyclic graph with topological ordering on the nodes.

Finding integral solutions

After solving the LP-relaxation by column generation, we have to find an integral solution. Possible methods:
\square Branch-and-price: combination of branch-and-bound with column generation.
\square Finds optimal IP value $Z_{G A}$

$$
Z_{L P} \leq Z_{G A}
$$

\square Solve ILP only with variables you generated during column generation. Finds $Z_{G A-g e n e r a t e d-c o l u m n s ~}$

$$
Z_{L P} \leq Z_{G A} \leq Z_{G A-g e n e r a t e d _c o l u m n s}
$$

Finding integral solutions (2)

\square Generate pool of additional columns:

1. Take optimal solution of pricing problem
2. For each flight in this solution:
3. Remove flight from the graph
4. Compute shortest path
5. Add new gate plan to pool
6. Put flight back in graph

- Not added when solving the LP-relaxation by column generation but after that when we want to find an integral solution.

$Z_{L P} \leq Z_{G A} \leq Z_{G A \text { with additional columns }} \leq Z_{G A g e n e r a t e d ~ c o l u m n s ~}$

Computational results

Standard ILP

```
    80 flights
\square }20\mathrm{ gates
\square6420 variabelen
\square}64981\mathrm{ constraints
\square.5 to 2 hours computation
time
```


Column generation

■ 560 flights
$\square 100$ gates
■ Generated columns: 12.000 13.000

- Additional columns: 65.000 85.000
\square Computation time:
LP: 70-234 sec
ILP: 5-333 seconden
Number of iteraties: 500 700
\square Integrality gap: 0-2 \%o
(2) (2 points) A large production company owns m distribution centers from which goods are sent to the customers. For each center $i(i=1, \ldots, m)$ we know the cost k_{i} of keeping the center open, its capacity M_{i}, and the transportation cost q_{i} per unit for transporting goods from the production facility to center i. For each customer $j(j=1, \ldots, n)$ we know his demand v_{j} and the transportation cost $c_{i j}$ per unit for sending goods from center i to customer j. Each customer has to be served by exactly one distribution center.
(c) An alternative way to formulate the problem in (b) is by using customer groups. A customer group for center i is a set of customers served by distribution center i such that the capacity M_{i} of center i is not exceeded. Define S_{i} as the collection of all feasible customers groups for center i. Give an integer linear programming formulation for the problem of part (b) based on customer groups.
d) Describe how the LP-relaxation of this formulation can be solved by column generation. Your description should include a formulation of the pricing problem for a given center i. You do not have to describe how to solve the pricing problem (but you are allowed to do so).

Exam 2012

$\square m$ distribution centers, M_{i} capacity of center i
$\square n$ customers, v_{j} demand of customer j
\square Cost:
$\square k_{i}$ for opening depot i
$\square q_{i}$ per unit for transportation from production facility to depot i
$\square \mathrm{c}_{\mathrm{ij}}$ per unit for transportation from depot i to customer j
Which depots should be opened, what is optimal transportation plan?

How to solve by column generation?

