

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Column generation models

The Beunhaas problem

- Beun de Haas is an independent entrepreneur.
- Clients contact him for small jobs.
- Planning period: days 1, . . , T.
- For each job j is given:
 - the reward (c_j) ;
 - the time it takes (a_j);
- Beun has Q time on each day

Goal. Choose and plan the work to earn as much as possible.

First: a simple model

Universiteit Utrecht

Advanced ILP formulation

Formulation with day plans.

- A day plan for day t is a set of jobs that Beun can do on day t.
- *S* is the set of feasible day plans
- The reward of day plan p is equal to C_p
- Use a binary variable:
 - $x_p = 1$ if day plan p from S is chosen, 0 otherwise

This is the Master problem

ILP with day plans

Disadvantage: solving ILP may take a long time

Solution: relax integrality constraints, LP-relaxation.

- Maybe fractional solution
- Upperbound

ILP with day plans (2)

Disadvantage: There are so many possible day plans

Solution: Consider only interesting day plans **Column generation.**

Universiteit Utrecht

Column generation for LP

- Start with Restricted Master Problem: a small set of day plans
- 2. Solve LP-relaxation.
- Find out if there is a new dayplans that can improve the solution (= pricing)
- 4. No \Rightarrow optimum found
- 5. Yes \Rightarrow add plan to model and go to 2.

Pricing= (Lagrangean) subproblem

Finding out if there are day plans to improve solutionRecall: variable can improve solution if and only if reduced cost are positive

Pricing problem:

- Find day plan with maximal reduced cost
 - If maximum > 0, add day plan
 - Otherwise stop
- Knapsack problem
- Solved by dynamic programming

The Beunhaas problem: generalization

- Beun de Haas is an independent entrepreneur.
- Clients contact him for small jobs.
- Planning period: days 1, . . , T.
- For each job j is given:
 - the reward (c_j) ;
 - the time it takes (a_j);
 - the days on which they can be done,
 - I_t set of jobs that available on day t
- Beun has Q_t time on day t (t = 1, . . . , T). **Goal.** Choose and plan the work to earn as much as possible.

Beun de Haas

1000	Day	Working time
	Monday	6 hours
	Tuesday	8 hours
	Wednesday	4 hours
	Thursday	8 hours
	Friday	4 hours

Job	Duration	Revenue	Days	
1	2 hours	5	Mon, wed, fri	
2	3 hours	6	Mon, tue, thu	
3	2 hours	4	Wed, thu, fri	
etc				[Facul
Universi	ten Utrecht		information and C	Comput

Column generation = cutting plane algorithm in dual

Primal:

- Restricted problem has limited set of variables
- Pricing problem: find ← variable that improves current solution (use reduced cost)

Column generation

Dual

- Restricted problem has limited set of constraints
- Separation problem: find constraint that violates current optimal solution

Cutting plane algorithm

Gate assignment at Schiphol

Universiteit Utrecht

Information and Computing Sciences]

22

Gate assignment at Schiphol

We have a set of flights:

- Arrival and departure time
- Type of aircraft
- Region of origin/destination (Schengen/EU/Non-EU)
- Preferences of airline
- Ground handler

And we have a set of gates

- Possible regions (Schengen/EU/Non-EU)
- Possible aircraft
- Possible ground handlers

Gate assignment at Schiphol (2)

Goal:

find assignment one day ahead maximize *robustness*

that satisfies:

- region constraints
- aircraft constraints
- ground handler constraints
- time constraints
- preferences

Gate assignment at Schiphol (3)

- High for small separation times
- Low for long separation times
 - Descending steeply in beginning

$$t_{v,w}^{sep} = t_{w}^{arrival} - t_{v}^{departure}$$

$$C = \sum$$

 $C = \sum_{v,w} consecutive flights on the same gate <math>C(t_{v,w}^{sep})$

$$c(t^{sep}) = 1000(\arctan(0.21(5-t^{sep})) + \frac{\pi}{2})$$

Refinements:

Certain combinations of flights are more desirableCertain assignments are less desirable

Gate plans

Distinguish only between gate types (not between individual gates): set of gates with the same ground handler, security region, aircraft size

Gate plan for gate of type a:

Set of flights assigned to the same gate

- All fights must be allowed on gate of type *a*
- Time between two consecutive flights must be at least 20 minutes

Cost of gate plan = cost due to corresponding separation times

Decision variable $x_i = 0/1$ if gate plan i is (not) selected.

Gate assignment: decomposition model

Master problem:

- Variables are plans for one gate
- Each flight is on exactly one gate
- Flight assigned to gate of correct type
- Preference constraints and other
- Maximize robustness

Subproblem:

- Feasible plans for one gate
 - All flights are allowed on the type of gate under consideration
 - At least 20 minutes between two consecutive flights.
- Solved as shortest path problem on directed acyclic graph with topological ordering on the nodes.

Finding integral solutions

After solving the LP-relaxation by column generation, we have to find an integral solution. Possible methods:

Branch-and-price: combination of branch-and-bound with column generation.

Finds optimal IP value Z_{GA}

 $Z_{LP} \leq Z_{GA}$

Solve ILP only with variables you generated during column generation. Finds Z_{GA-generated}_columns

 $Z_{LP} \leq Z_{GA} \leq Z_{GA}$ generated columns

Universiteit Utrecht

Finding integral solutions (2)

Generate pool of additional columns:

- 1. Take optimal solution of pricing problem
- 2. For each flight in this solution:
 - 1. Remove flight from the graph
 - 2. Compute shortest path
 - 3. Add new gate plan to pool
 - 4. Put flight back in graph
- Not added when solving the LP-relaxation by column generation but after that when we want to find an integral solution.

 $Z_{LP} \leq Z_{GA} \leq Z_{GA \text{ with additional columns}} \leq Z_{GA \text{ generated columns}}$

Universiteit Utrecht

Computational results

Standard ILP

Column generation

- 80 flights
- 20 gates
- 66420 variabelen
- 64981 constraints
- 1.5 to 2 hours computation time

- 560 flights
- 100 gates
- Generated columns: 12.000 -13.000
- Additional columns: 65.000 -85.000
- Computation time:
 - LP: 70 234 sec
 - ILP: 5 333 seconden
- Number of iteraties: 500 700
- Integrality gap: 0 2 ‰

(2) (2 points) A large production company owns m distribution centers from which goods are sent to the customers. For each center i (i = 1, ..., m) we know the cost k_i of keeping the center open, its capacity M_i , and the transportation cost q_i per unit for transporting goods from the production facility to center i. For each customer j (j = 1, ..., n) we know his demand v_j and the transportation cost c_{ij} per unit for sending goods from center i to customer j. Each customer has to be served by exactly one distribution center.

- (c) An alternative way to formulate the problem in (b) is by using **customer groups**. A customer group for center i is a set of customers served by distribution center i such that the capacity M_i of center i is not exceeded. Define S_i as the collection of all feasible customers groups for center i. Give an integer linear programming formulation for the problem of part (b) based on customer groups.
- (d) Describe how the LP-relaxation of this formulation can be solved by column generation. Your description should include a formulation of the pricing problem for a given center *i*. You do not have to describe how to solve the pricing problem (but you are allowed to do so).

Exam 2012

m distribution centers, M_i capacity of center *i*

n customers, v_i demand of customer *j*

Cost:

- k_i for opening depot i
- q_i per unit for transportation from production facility to depot i
- c_{ii} per unit for transportation from depot *i* to customer *j*

Which depots should be opened, what is optimal transportation plan?

How to solve by column generation?

