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Advanced linear programming

Stochastic programming
Benders decomposition

Marjan van den Akker
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Two stage stochastic linear programming 
example: farmer’s problems
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Optimal solution
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Scenarios

� Harvest yield very sensitive to weather:

� Yield 20% more in good year, 20% reduced in bad year

� Suppose type of year would be known beforehand:

� Good year: 167.667

� Average year: 118.600

� Bad year: 59.950 (buy corn)

� Average: 115.406

� This is not realistic!!!!
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Two-stage model

� First stage: land assignment

� Second stage: sales and purchase

� Maximize expected profit

� Solution value 108.390

� Expected value of perfect information: 

� 115.406-108.390= 7.016
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Two-stage stochastic linear programming 
problem

� Scenario’s: 1,2,…,K

� ��	:probability scenario s occurs

� First stage decision variables: x

� Second stage decision variables: yω (ω=1,2,…,K)

� Minimize expected cost: 
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Two stage stochastic linear programming 
problem
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Benders decomposition sub problem

� For fixed x:

� Equivalent to:
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Benders decomposition

� Dual of Pω:

� We have 
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Benders decomposition: master problem
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Number of constraints increased
Number of variables has decreased
Cutting plane algorithm!
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Benders decomposition: initial relaxed 
master problem
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Benders decomposition: Solution 
algorithm

1. Solve relaxed master problem: x*, z1*,…, zK*

2. For all ω do

1. Solve sub problem by dual simplex

2. If optimum > z*ω add 

3. If sub problem infeasible, then dual has infinite solution add

4. If feasible and optimum ≤ z*ω do nothing

3. If feasible and optimum ≤ z*ω for all ω, problem solved to 
optimality, otherwise solve relaxed problem again (go to 
step 1)
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Master LP Sub problem

Solutions

Cutting planes

Benders decomposition: use cutting plane 
algorithm
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Example: facility location, just one 
scenario

Depot i 1 2 3

Fixed c Fi 2 3 3

customers cij

1 2 4 5

2 3 3 4

3 4 1 2

4 5 2 1

5 7 6 3

Cust j vj w1j w2j w3j

1 2 0 0 0

2 3 0 0 0

3 4 0 3 2

4 5 0 3 4

5 7 0 1 4

vj and wij first round


