Advanced linear programming

Stochastic programming Benders decomposition

Marjan van den Akker

Universiteit Utrecht

Two stage stochastic linear programming example: farmer's problems

	Wheat	Corn	Sugar Beets		
Yield (T/acre)	2.5	3	20		
Planting cost (acre)	150	230	260		
Selling price $(\$/T)$	170	150	36 under 6000 T		
			$10~\mathrm{above}~6000~\mathrm{T}$		
Purchase price $(\$/T)$	238	210	—		
Minimum require-	200	240	—		
ment (T)					
Total available land: 500 acres					

Optimal solution

Culture	Wheat	Corn	Sugar Beets
Surface (acres)	120	80	300
Yield (T)	300	240	6000
Sales (T)	100		6000
Purchase (T)	—	_	_
Overall profit: \$118,600			

Universiteit Utrecht

Scenarios

Harvest yield very sensitive to weather:

- Yield 20% more in good year, 20% reduced in bad year
- Suppose type of year would be known beforehand:
 - Good year: 167.667
 - Average year: 118.600
 - Bad year: 59.950 (buy corn)
 - Average: 115.406

This is not realistic!!!!

Two-stage model

First stage: land assignmentSecond stage: sales and purchaseMaximize expected profit

Solution value 108.390

Expected value of perfect information: 115.406-108.390 = 7.016

Universiteit Utrecht

Two-stage stochastic linear programming problem

Scenario's: 1,2,...,K
α_ω :probability scenario s occurs
First stage decision variables: x
Second stage decision variables: y_ω (ω=1,2,...,K)

Minimize expected cost:

$$cx + \alpha_1 fy_1 + \alpha_2 fy_2 + \dots + \alpha_K fy_K$$

Two stage stochastic linear programming problem

 $\min cx + \alpha_1 fy_1 + \alpha_2 fy_2 + \dots + \alpha_K fy_K$ s.t

[Faculty of Science Information and Computing Sciences]

Universiteit Utrecht

Benders decomposition sub problem

For fixed x:
$$P_{\omega}: z_{\omega}(x) = \min fy_{\omega}$$

subject to $B_{\omega}x + Dy_{\omega} = d_{\omega}$
 $y_{\omega} \ge 0$

Equivalent to:
$$P_{\omega}$$
: $z_{\omega}(x) = \min f y_{\omega}$
subject to $Dy_{\omega} = d_{\omega} - B_{\omega} x$
 $y_{\omega} \ge 0$

[Faculty of Science Information and Computing Sciences]

Universiteit Utrecht

Benders decomposition

Dual of
$$P_{\omega}$$
:

$$\max p_{\omega}(d_{\omega} - B_{\omega}x)$$

s.t. $p_{\omega}D \le f$

$$P = \{ p \mid pD \le f \}$$

$$p^{i} \ (i \in I) \text{ extreme points}$$

$$w^{j} \ (j \in J) \text{ extreme rays}$$

We have

 $w^{i}(d_{\omega} - B_{\omega}x) \leq 0 \quad \forall j \quad \text{(required for primal feasibility)}$ $z_{w} = \max_{i \in I} p^{i}(d_{\omega} - B_{\omega}x)$ Hence $p^{i}(d_{\omega} - B_{\omega}x) \leq z_{\omega} \quad \forall i$

Universiteit Utrecht

Benders decomposition: master problem

$$\min cx + \sum_{\omega=1}^{K} \alpha_{\omega} z_{\omega}$$

s.t.
$$Ax = b$$

$$p^{i} (d_{\omega} - B_{\omega} x) \leq z_{\omega} \quad \forall i, \omega$$

$$w^{j} (d_{\omega} - B_{\omega} x) \leq 0 \quad \forall j, \omega$$

$$x \geq 0$$

Universiteit Utrecht

Number of constraints increased Number of variables has decreased **Cutting plane algorithm!**

Benders decomposition: initial relaxed master problem

s.t.

Ax = b

 $x \ge 0$

Universiteit Utrecht

Benders decomposition: Solution algorithm

- **1**. Solve relaxed master problem: x^* , z_1^* ,..., z_K^*
- 2. For all ω do
 - 1. Solve sub problem by dual simplex

$$\min f y_{\omega} \quad s.t. \, D y_{\omega} = (d_{\omega} - B_{\omega} x^*), \quad y_{\omega} \ge 0.$$

2. If optimum > z_{ω}^* add

 $p^{i}(d_{\omega} - B_{\omega}x) \le z_{\omega}$, where p^{i} optimal extreme point in dual 3. If sub problem infeasible, then dual has infinite solution add

 $w^{j}(d_{\omega} - B_{\omega}x) \leq 0$, where w^{j} extreme ray in dual

which gives infinite solution value

- 4. If feasible and optimum $\leq z^*_{\omega}$ do nothing
- 3. If feasible and optimum ≤ z*_ω for all ω, problem solved to optimality, otherwise solve relaxed problem again (go to step 1) **Information and Computing Sciences**

Example: facility location, just one scenario

Depot i	1	2	3
Fixed c F _i	2	3	3
customers	C _{ij}		
1	2	4	5
2	3	3	4
3	4	1	2
4	5	2	1
5	7	6	3

 v_i and w_{ij} first round

Cust j	Vj	w _{1j}	w _{2j}	w _{3j}
1	2	0	0	0
2	3	0	0	0
3	4	0	3	2
4	5	0	3	4
5	7	0	1	4

Universiteit Utrecht