Advanced linear programming

Lagrangean relaxation (ILP duality)

Marjan van den Akker

Lagrangean relaxation

\square can be viewed as ILP duality
\square gives a bound at least as good as the linear programming relaxation

- Today:
\square Strength of Lagrangean dual
- Knapsack example

Lagrangean relaxation

'Nasty'
 constraints

$$
\begin{aligned}
& Z_{I P}: \min c x \\
& A x \geq b \\
& D x \geq d \\
& x \text { integer }
\end{aligned}
$$

Lagrangean subproblem

 $p \geq 0$:

We do a minimization problem!

$$
Z(p) \leq Z_{I P}
$$

$$
Z_{L P}=\min \{c x \mid A x \geq b, D x \geq d\}
$$

You may violate the constraints but this hastcostnce

Lagrangean relaxation (2)

$Z_{D}: \max Z(p)$

$$
p \geq 0
$$

$\mathrm{X}=\{\mathrm{x} \mid D x \geq d, x$ integer $\}$

Theorem: Z_{D} is equal to

$$
\text { Corollary: } Z_{L P} \leq Z_{D} \leq Z_{I P}
$$

$\min c x$
$A x \geq b$
$x \in \mathrm{CH}(X)$ (i.e. convex hull of X)

Corollary:
if $C H(x)=\{x \mid D x \geq d\}$ (integrality redundant in subproblem), then $Z_{D}=Z_{L P}$

In general Z_{D} can be solved by the subgradient method.

Knapsack problem

$$
\begin{aligned}
& \max \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{j}} x_{j} \\
& \text { S.t. } \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{j}} x_{j} \leq B \\
& \quad x_{j} \in\{0,1\}
\end{aligned}
$$

We now do a maximization problem!

$$
\begin{aligned}
& Z_{I P} \leq Z_{D} \leq Z_{L P} \\
& \text { actually, } Z_{D}=Z_{L P}
\end{aligned}
$$

Let $\lambda \geq 0$:

$$
\begin{aligned}
L(\lambda) & =\max \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{j}} x_{j}+\lambda\left(B-\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{j}} x_{j}\right) \quad \\
x_{j} & \in\{0,1\}
\end{aligned} \quad \begin{aligned}
& Z_{I P} \leq L(\lambda) \\
& \text { Lagrangean dual (best bound) }: \\
& Z_{D}=\min _{\lambda \geq 0} L(\lambda)
\end{aligned}
$$

Wrap up

\square ILP models many combinatorial optimization problems (Ch 10)

- ILP solved by algorithms with LP-relaxations as subproblems
\square If constraint matrix TUM: LP-relaxation solves problem
\square In general: use branch-and-bound with LP-relaxation as bound (Ch 11.2)
\square LP-relaxation can be strengthened by cutting planes
\square Results in branch-and-cut:
- Framework algorithm, many features have to be included
\square This algorithm in used by well-known solvers like CPLEX and Gurobi, GLPK.

Wrap up

Dealing with very large models:

■ Decomposition on LP:

- Column generation = Dantzig Wollfe decomposition = cutting planes in dual (Ch 6.1, 6.2, 6.3, 6.4)
- Reduces the number of constraints at the cost of a very large number of variables, but you only add the necessary ones
- Benders decomposition = Dantzig Wolfe decomposition in dual (Ch 6.5)
- Reduces the number of variables at the cost of a very large number of constraints, but you only add the necessary ones
\square Decomposition on ILP:
- Lagrangean relaxation (Ch 11.4)

