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Advanced linear programming

Lagrangean relaxation (ILP duality)

Marjan van den Akker
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Lagrangean relaxation

� can be viewed as ILP duality

� gives a bound at least as good as the linear programming
relaxation

� Today:

� Strength of Lagrangean dual

� Knapsack example
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Lagrangean relaxation
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We do a minimization problem!

You may violate
the constraints
but this has cost

`Nasty’ 
constraints
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Lagrangean relaxation (2)
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Lagrangean dual
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Knapsack problem
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We now do a maximization problem!
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We can
check this.
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Wrap up

� ILP models many combinatorial optimization problems (Ch
10)

� ILP solved by algorithms with LP-relaxations as 
subproblems

� If constraint matrix TUM: LP-relaxation solves problem

� In general: use branch-and-bound with LP-relaxation as 
bound (Ch 11.2)

� LP-relaxation can be strengthened by cutting planes

� Results in branch-and-cut:

� Framework algorithm, many features have to be included

� This algorithm in used by well-known solvers like CPLEX and 
Gurobi, GLPK.
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Wrap up

Dealing with very large models:

� Decomposition on LP:

� Column generation = Dantzig Wollfe decomposition = cutting
planes in dual (Ch 6.1, 6.2, 6.3, 6.4)

• Reduces the number of constraints at the cost of a very large 
number of variables, but you only add the necessary ones

� Benders decomposition = Dantzig Wolfe decomposition in dual
(Ch 6.5)

• Reduces the number of variables at the cost of a very large 
number of constraints, but you only add the necessary ones

� Decomposition on ILP:

� Lagrangean relaxation (Ch 11.4)


