Advanced linear programming

http://www.staff.science.uu.nl/~akker103/ALP/

Chapter 10: Integer linear programming models

Marjan van den Akker

Intro

Marjan van den Akker

- Master Mathematics TU/e
- PhD Mathematics of Operations Research TU/e
\square Engineer Netherlands Aerospace Center (NLR)
\square Lecturer/researcher Computer Science UU:
\square Research on planning algorithms, integer linear programming and simulation
- Master courses :
- Algorithms for decision support (COSC),
- Advanced Linear Programming (Mastermath)
\square Coordination Software- and Gameproject

Method of working

```
Lectures
\(\square\) Self study material
\(\square\) Slides and your own notes
- Book
Some lecture notes (under construction)
\(\square\) Additional reading material
Exercises (if you hand in a solution I can check, good solutions can be made available on the course website)
\(\square\) Slides and reading material published on website http://www.staff.science.uu.nl/~akker103/ALP/
\(\square\) Written exam at the end. ONE retake
```


Topics of part 2

Large-scale LP (Ch 6)
\square Column generation and Dantzig-Wolfe decomposition

- Benders decomposition

Integer Linear Programming (ILP) (Ch $10+11$):
\square Modelling
\square Solving by branch-and-bound
\square Cutting planes, branch-and-cut

Lagrangean relaxation (Ch 11)

Since column generation and Benders have their main applications in ILP, we will do ILP first.

This lecture

\square ILP models
\square Remarks on complexity LP and ILP
\square Solving ILP by branch-and-bound
\square Model choice matters: strength of LP-relaxation

Knapsack problem

Knapsack with volume 15

What should you take with you to maximize utility?

Item	1:paper	2:book	3:bread	4:smart -phone	5:water
Utility	8	12	7	15	12
Volume	4	8	5	2	6

Knapsack problem (2)

$x_{1}=1$ if item 1 is selected, 0 otherwise, $x_{2}, \ldots \ldots$

$\max z=8 x_{1}+12 x_{2}+7 x_{3}+15 x_{4}+12 x_{5}$
subject to

$$
\begin{aligned}
& 4 x_{1}+8 x_{2}+5 x_{3}+2 x_{4}+6 x_{5} \leq 15 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in\{0,1\}
\end{aligned}
$$

(Mixed) Integer linear programming

Min $c^{\top} x+d^{\top} y$
s.t. $A x+B y \leq b$
$x, y \geq 0$
x integral (or binary)

Extension of LP:
\square Good news: more possibilities for modelling
Bad news: larger solution times

Combinatorial optimization

- Find feasible solution with minimal cost, maximal revenue
- Number of possible solutions is finite but very, very large
- Many combinatorial optimization problem can be modeled as ILP
I ILP is NP-hard

NP-hardness

- NP-hard !!!!

\square P: problem can be solved in polynomial time

- NP: check solution for feasibility is polynomial, optimization is not provably faster than enumeration of all solutions. (non-deterministic polynomial)
- Pvs NP
\$ 1 million Millenium Prize problem
http://www.claymath.org/millennium/P vs NP

A long time ago Sissa ben Dahir, the Grand Vizer to the INDIAN KING, SHIRHAM, PRESENTED HIS LATEST CREATION TO HIS RIULER.

THE KING NAME HIS OWN M

SISSA REPLIED, 'MAJESTY, GIVE >3

OR GIVE ME SOME RICE IN THE FOLLOWINu

1 GRAIN TO PLACE ON THE FIRST SQUARE OF THE CHESSBOA
2 GRAINS TO PLACE ON THE SECOND SQUARE,
4 GRAINS FOR THE THIRD SQUARE, AND 8 GRAINS FOR THE 4TH SQUARE; AND

TO CONTINUE IN LIKE MANNER

Cover Netherlands and Belgium with a layer of 1 m

(Mixed) Integer linear program

$\operatorname{Min} c^{\top} x+D^{\top} y$
s.t. $A x+B y \leq b$
$x, y \geq 0$
x integral
(or binary)

LP-relaxation

Min $c^{\top} x+D^{\top} y$
s.t. $A x+B y \leq b$
$x, y \geq 0$

Lower bound (or upper bound in case of maximization)

Solution method for linear programming

\square Simplex method

- Slower than polynomial
- Practical
- Ellipsoid method (previous lecture)
\square Polynomial (Khachian, 1979)
- Not practical
- Interior points methods
\square Polynomial (Karmakar, 1984)
■ Outperforms Simplex for very large instances

$L P \in P$

Knapsack problem revisited

 since we use it to demonstrate branch-and-bound for ILPKnapsack volume b
Item i has profit c_{i} and weight a_{i} $x_{i}=1$ if item i is selected, 0 otherwise...... $\max \sum_{i=1}^{n} c_{i} x_{i}$
s.t.

$$
\begin{aligned}
& \sum_{i=1}^{n} a_{i} x_{i} \leq b \\
& x_{i} \in\{0,1\} \quad(i=1,2, \ldots, n)
\end{aligned}
$$

Knapsack problem: elements needed in branch-and-bound

LP-relaxation:

Greedy algorithm
Step 0. Order variables such that $\frac{c_{1}}{a_{1}} \geq \frac{c_{2}}{a_{2}} \geq \ldots \geq \frac{c_{n}}{a_{n}}$
Step 1. $x_{i} \leftarrow 0 \forall_{i}$; restcapacity $\bar{b}=b ; i=1$
Step 2.If $a_{i} \leq \bar{b}$, then $x_{j} \leftarrow 1$, else $x_{j} \leftarrow \frac{\bar{b}}{a_{i}}$. Set $\bar{b} \leftarrow \bar{b}-a_{i} x_{i} ; j \leftarrow j+1$
Step 3. If $\bar{b}>0$, go to Step 2.

Feasible solution:

rounding down solution of LP-relaxation

Solving ILP by branch-and-bound

Let x^{*} be the best known feasible solution

1. Select an active sub problem F_{i} (unevaluated node)
2. If F_{i} is infeasible: delete node
3. Compute upper bound $Z_{L P}\left(F_{i}\right)$ by solving LP-relaxation and feasible solution x_{f} (by rounding)
If $Z_{L P}\left(F_{i}\right) \leq$ value x^{*} delete node (bounding)
If x_{f} is better than x^{*} : update x^{*}
If solution $x_{L P}$ to LP-relaxation is integral,
then If $x_{L P}$ is better than x^{*} : update x^{*} and node finished,
otherwise split node into two new subproblems (branching)
4. Go to step 1

Optional

This if for maximization problem, the book uses a minimization problem.

Modeling

Objective function Constraints
 \square Decision variables

Facility location

Possible locations: n

Customers: m

Capacitated facility location

\square Data:
$\square m$ customers, n possible locations of depot
$\square c_{i j}$ unit cost of serving customer i by depot j
\square Customer demand: D_{i}
\square Capacity depot: C_{j}
\square Fixed cost for opening depot DC: F_{j}
\square Which depots are opened and which customer is served by which depot?

Capacitated facility location:

Our example shows modelling possibilities with binary variables
\square Our model uses binary variables for fixed cost constraints
\square Our model uses binary variables forcing constraints:
\square depot can only be used when it is open.

Uncapacitated facility location

Data:
m customers, n possible locations of depot
\square Each customer is assigned to one depot
$\square d_{i j}$ cost of serving customer i by depot jFixed cost for opening depot DC: F_{j}
Which depots are opened and which customer is served by which depot?

Uncapacitated facility location

- Two formulations: (FL) and (AFL)
$\square P_{F}$ is defined as the feasible set corresponding to the LP-relaxation of $F\left(P_{F}\right.$ is a polyhedron)
\square We show that

$$
P_{F L} \subset P_{A F L}
$$

\square This means that (FL) gives a stronger lower bound

$$
Z_{L P}(A F L) \leq Z_{L P}(F L) \leq Z_{I P}
$$

However, (FL) has more constraints

Strength (quality) of an ILP formulation

$\square T$ set of feasible integral solutions
\square For formulation F, P_{F} is defined as the feasible set of solutions of the LP-relaxation of F
$\square P_{F}$ is a polyhedron
\square Ideal situation: P_{F} is the convex hull of T
\square Formulation A is stronger than formulation B if

$$
P_{A} \subset P_{B}
$$

\square Hence, the bound is better
\square This is likely to reduce the number of nodes in the branch-and-bound tree
This shows that model choices matter!

Minimum spanning tree

- $G=(N, E)$
$\square \mathrm{N}$ set of n nodes
$\square E$ set of m edges
$\square C_{e}$ cost of edge e
- Tree is a subgraph without cycles
- Spanning tree is a tree containing all nodes
\square Find a spanning tree with minimum cost
\square We compare formulations (Subtour) and (Cut) and show that (Subtour) is stronger.

Procurement problem

Computer-manufacturer wants to buy 600 hard-disks
Offers:

	Fixed cost	Minimum amount to order	Price per item	Discount Threshold	Discount price	Available number of items
A	100	50	24	250	18	500
B	75	50	28	150	20	700

\square What is the optimal procurement plan?

Procurement problem

Contains important ILP modelling features:

Already seen in facility location:
\square Fixed cost
\square Forcing contraints

Other features:
\square Linearize piece-wise linear cost
\square Choice constraints

Treasure island

\square Diamonds are buried on an island
\square Numbers give number of diamonds in neighboring positions (include diagonal)
\square At most one diamond per position

- No diamond at position with number

	1								2		2	2	3		2	1	
0				2		1				5					4		2
	0	1			2										5		
	1		2		3			1		4		4					
3					1			1	2		2		3			2	
				3			1	2	4		3					0	
		4			1						3	1			3		
	2	3											1				
3				2	0	0		4		5	2				1		0
		2						3							0		1
		3		2						5		4		3			
2					0			2			3		5				3
	4	4	2	2	2			1		3							3
												3			3		
3			5			4	3						1		2		
2			5						0	1			2				1
	2					2		2			0			1			1
3		2			2					2		3			2		
				2		1						5			1		
	2	2					3	2	2							1	
				1					1	3							
				2			0				5			2	3	3	
	0	1			2			1		3			3				
	1	1	2		2				0			2		3			

Treasure island with pitfall

\square Like treasure island but exactly one given number is incorrect.

Wrap-up

\square Integer linear programming (ILP) has many modelling possibilities
\square ILP can be solved by branch-and-bound
\square Soemtimes there are different ILP formulation for the same problem. Formulation makes a difference, e.g. because of the strength of the LP-relaxation.

