Advanced linear programming

11.1, 11.2: Solving integer linear programming problems:

Totally Unimodular Matrices
Cutting planes

Marjan van den Akker

This lecture: More on solving ILPs

■ Totally Unimodular Matrices: LP-relaxation is integral ⊕

If LP-relaxation is fractional (usually)

- Cutting planes
- Branch-and cut

Totally Unimodular Matrices (TUM) (1)

- Basic feasible solution $(x_B, x_N) = (B^{-1}b, 0)$
- Assume that B and b are integral
- **Observation:** If the optimal basis of the LP-relaxation has det(B)=-1 or +1, then the linear programming relaxation solves the IP.
- **Definition:** A matrix is *totally unimodular* if every square submatrix has determinant +1, -1, or 0.
- **Theorem:** A matrix with in each row and column at most one +1 or -1 is TUM.

Totally Unimodular Matrices (TUM) (2)

- **Theorem:** A matrix with in each row and column at most one +1 or -1 is TUM.
- **Theorem:** A matrix A is TUM if and only if A^T -A, (A,I), and (A,A) are TUM

Totally Unimodular Matrices (TUM) (3)

- **Theorem:** A matrix A is TUM if
 - 1. $a_{ii} \in \{+1,0,-1\}$ for all i, j
 - 2. Each column contains at most two nonzero coefficients
 - 3. There exists a partition (M_1, M_2) of the set M of rows such that each column j containing two nonzero coefficients satisfies

$$\sum_{i \in M_1} a_{ij} - \sum_{i \in M_2} a_{ij} = 0$$

Totally Unimodular Matrices (TUM) (4)

Theorem: The linear program

$$\max\{cx \mid Ax \le b, x \ge 0\}$$

has an integral optimal solution for all integer vectors *b* for which it has a finite optimal value if and only if *A* is TUM.

Totally Unimodular Matrices (TUM) (5)

Assignment is TUM

Minimum cost network flow is TUM

- Directed graph (V,A)
- \blacksquare Unit flow cost c_{ij}
- Supply/demand b_i
 - supply positive, demand negative
- f_{ij} : flow on arc (i, j)

$$\min \sum_{(i,j)\in A} c_{ij} f_{ij}$$

s.t.

$$\sum_{k:(i,k)\in A} f_{ik} - \sum_{k:(k,i)\in A} f_{ik} = b_i$$

 f_{ii} integral

Minimum cost network flow is TUM (2)

Example b=(3,0,0,-2,4,-5)

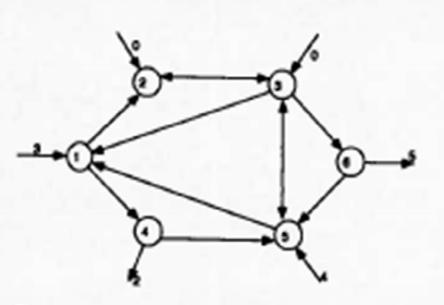


Fig. 3.1 Digraph for minimum cost network flow

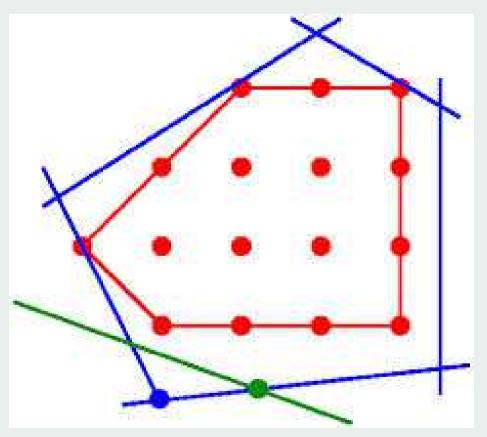
Cutting plane algorithm

- 1. Solve the LP-relaxation. Let x^* be an optimal solution.
- 2. If x^* is integral, stop x^* optimal solution to the integer linear programming problem.
- 3. If not, add a *valid inequality* that is not satisfied by x^* and go to Step 1. Solve separation problem.

Definition: A valid inequality is a linear constraint that is satisfied by all integral solutions.

If it cuts of fractional solutions it acts as cutting plane.

Cutting plane algorithm



Gomory cuts

■ Take row from end tableau corresponding to fractional basic variable

$$x_i + \sum_{j \in N} \overline{a}_{ij} x_j = \overline{a}_{io}$$
 with \overline{a}_{io} fractional

Gomory cut

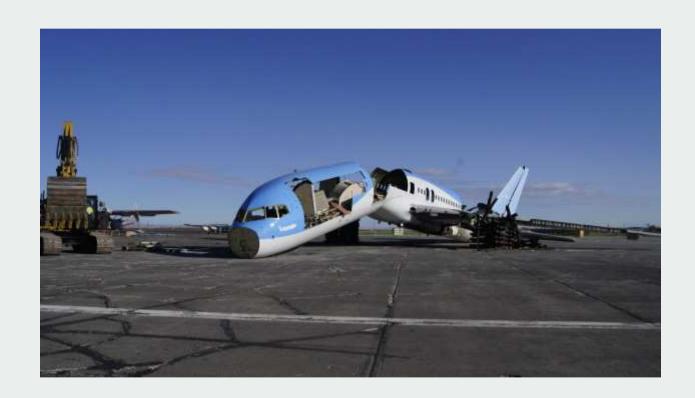
$$x_i + \sum_{j \in N} \lfloor \overline{a}_{ij} \rfloor x_j \leq \lfloor \overline{a}_{io} \rfloor$$

You can find the optimum by adding Gomory cuts, no practical method since you may need exponentially many steps

Problem-specific valid inequalities

- Usually classes of inequalities
- Cover inequalities for knapsack problems
- Weighted independent set
- Single-machine scheduling

"Cutting plane"



Branch-and-cut

- Combination of cutting planes and ILP solving by branchand-bound
- Applied in well-known ILP-solvers:
 - CPLEX,
 - GUROBI,
 - **EXPRES-MP**
 - COIN-OR

Solving ILP by branch-and-bound or branch-and-cut

Let x* be the best known feasible solution

Search strategy

- 1. Select an active sub problem F_i (unevaluated node)
- 2. If F_i is infeasible: delete node
- 3. Compute upper bound $Z_{LP}(F_i)$ by solving LP-relaxation and feasible solution X_f (by rounding)

 How many cuts? Which

If $\mathcal{T}_{P}(F_i) \leq \text{value } x^* \text{ delete node (bounding) } \frac{1}{\text{classes}}$

 x_f is better than x^* : update x^*

 \angle If solution x_{LP} to LP-relaxation is integral,

then If x_{LP} is better than x^* : update x^* and node finished, otherwise split node into two new subproblems (branching)

4. Go to step 1

Branching strategy

Optional

Primal heuristic

This if for maximization problem, the book uses a minimization problem.

[Faculty of Science Information and Computing Sciences]

Branch-and-cut is a framework algorithm!!

Last century, tailoring to your own problem was necessary in most cases and a huge amount of research has been undertaken in doing this:

- Pre-processing
- Classes of valid inequalities
- How many cuts in each node?
- Search strategy
- Branching strategy
- Primal heuristics
- Reduced cost fixing

Now solvers like CPLEX and Gurobi successfully (and secretly) apply a lot of the above techniques.

■ Tailoring of branch-and-cut sometimes successful, especially valid inequalities in case of a weak LP-relaxations

from http://www.lnmb.nl/conferences/2015/programlnmbconference/LNMB-NGB_Bixby.pdf

1998 ... A New Generation of MIP Codes

- Linear programming
 - Stable, robust dual simplex
- Variable/node selection
 - Influenced by traveling salesman problem
- Primal heuristics
 - 12 different tried at root
 - Retried based upon success
- Node presolve
 - Fast, incremental bound strengthening (very similar to Constraint Programming)

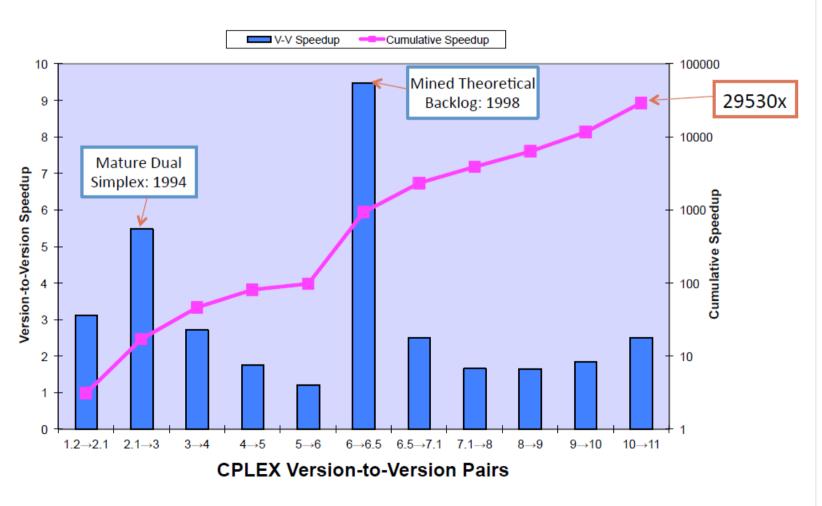
- Presolve numerous small ideas
 - Probing in constraints:

$$\sum x_j \le (\sum u_j) \ y, \ y = 0/1$$

$$\Rightarrow x_j \le u_j y \ (\text{for all } j)$$

- Cutting planes
 - Gomory, mixed-integer rounding (MIR), knapsack covers, flow covers, cliques, GUB covers, implied bounds, zero-half cuts, path cuts

Speedups 1991-2008



World record exact TSP solving

■ Branch-and-cut

CONCORDE:

http://www.math.uwaterloo.ca/tsp/concorde/index.html

Still we are talking about combinatorial optimization

- We have many, many, many variables
- Still large computation times
- Decomposition approaches often help
- **■** We now go to Chapter 6: Large-scale optimization
 - Decompositions for large LP's
 - Since these principles are usually used for solving ILP"s, Ch 10 was done first.

