Advanced linear programming

11.1, 11.2: Solving integer linear programming problems: Totally Unimodular Matrices Cutting planes

Marjan van den Akker

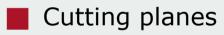
[Faculty of Science Information and Computing Sciences]

Universiteit Utrecht

This lecture: More on solving ILPs

Totally Unimodular Matrices: LP-relaxation is integral ③

If LP-relaxation is fractional (usually)



Branch-and cut

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Simulation, lecture 4

Cutting plane algorithm

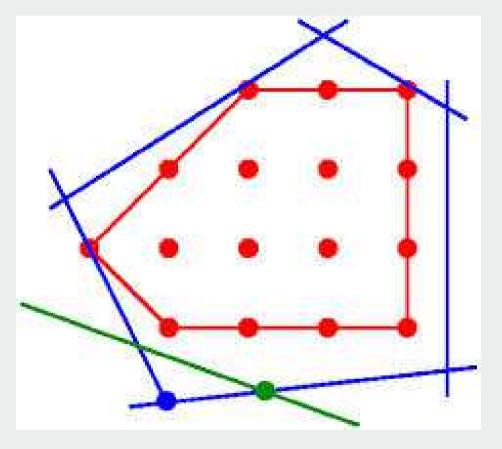
- 1. Solve the LP-relaxation. Let x^* be an optimal solution.
- 2. If x* is integral, stop x* optimal solution to the integer linear programming problem.

3. If not, add a *valid inequality* that is not satisfied by x^* and go to Step 1. Solve separation problem.

Definition: A valid inequality is a linear constraint that is satisfied by all integral solutions. If it cuts of fractional solutions it acts as *cutting plane*.

Universiteit Utrecht

Cutting plane algorithm



Gomory cuts

Take row from end tableau corresponding to fractional basic variable

$$x_i + \sum_{j \in N} \overline{a}_{ij} x_j = \overline{a}_{io}$$
 with \overline{a}_{io} fractional

Gomory cut

$$x_i + \sum_{j \in N} \left\lfloor \overline{a}_{ij} \right\rfloor x_j \leq \left\lfloor \overline{a}_{io} \right\rfloor$$

You can find the optimum by adding Gomory cuts, no practical method since you may need exponentially many steps

Universiteit Utrecht

Problem-specific valid inequalities

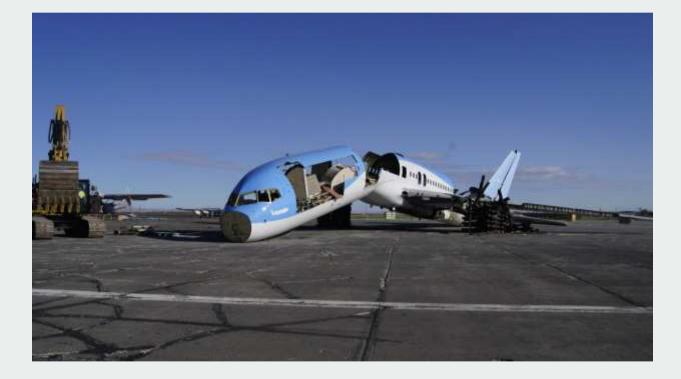
Usually classes of inequalities

Cover inequalities for knapsack problems

- Weighted independent set
- Single-machine scheduling

Universiteit Utrecht

"Cutting plane"



Universiteit Utrecht

Branch-and-cut

Combination of cutting planes and ILP solving by branchand-bound

Applied in well-known ILP-solvers:

- CPLEX,
- GUROBI,
- EXPRES-MP
- COIN-OR

Universiteit Utrecht

Solving ILP by branch-and-bound or branch-and-cut

Let x* be the best known feasible solution

Search strategy

- **1**. Select an active sub problem F_i (unevaluated node)
- 2. If F_i is infeasible: delete node
- 3. Compute upper bound $Z_{LP}(F_i)$ by solving LP-relaxation and feasible solution x_f (by rounding) How many cuts? Which

If $\mathcal{T}_{LP}(F_i) \leq \text{value } x^* \text{ delete node (bounding)}$ classes?

 x_f is better than x*: update x*

 \angle If solution x_{LP} to LP-relaxation is integral,

Primal heuristic

then If x_{LP} is better than x*: update x* and node finished, otherwise split node into two new subproblems (branching)

4. Go to step 1

Branching strategy

Optional

This if for maximization problem, the book uses a minimization problem.

Universiteit Utrecht

Branch-and-cut is a framework algorithm!!

Last century, tailoring to your own problem was necessary in most cases and a huge amount of research has been undertaken in doing this:

- Pre-processing
- Classes of valid inequalities
- How many cuts in each node?
- Search strategy
- Branching strategy
- Primal heuristics
- Reduced cost fixing

Now solvers like CPLEX and Gurobi successfully (and secretly) apply a lot of the above techniques.

Tailoring of branch-and-cut sometimes successful, especially valid inequalities in case of a weak LP-relaxations

Universiteit Utrecht

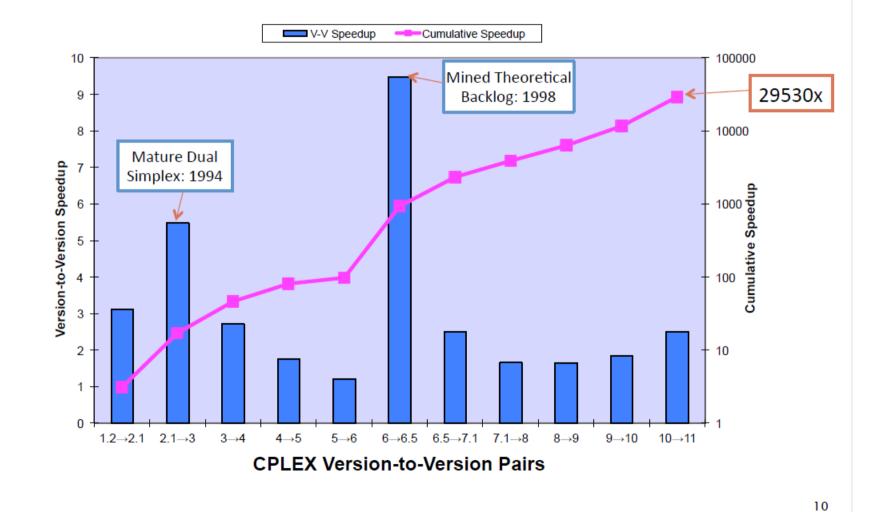
from http://www.lnmb.nl/conferences/2015/programlnmbconference/LNMB-NGB_Bixby.pdf

1998 ... A New Generation of MIP Codes

- Linear programming
 - Stable, robust dual simplex
- Variable/node selection
 - Influenced by traveling salesman problem
- Primal heuristics
 - 12 different tried at root
 - Retried based upon success
- Node presolve
 - Fast, incremental bound strengthening (very similar to Constraint Programming)

- Presolve numerous small ideas
 - Probing in constraints:
 ∑ x_j ≤ (∑ u_j) y, y = 0/1
 → x_j ≤ u_jy (for all j)
- Cutting planes
 - Gomory, mixed-integer rounding (MIR), knapsack covers, flow covers, cliques, GUB covers, implied bounds, zero-half cuts, path cuts

Speedups 1991-2008



......

World record exact TSP solving

Branch-and-cut

CONCORDE:

http://www.math.uwaterloo.ca/tsp/concorde/index.html

U.

Universiteit Utrecht

Still we are talking about combinatorial optimization

We have many, many, many variables

Still large computation times

Decomposition approaches often help

We now go to Chapter 6: Large-scale optimization

- Decompositions for large LP's
- Since these principles are usually used for solving ILP''s, Ch 10 was done first.

Universiteit Utrecht