
Advanced Linear Programming: The Exercises

The answers are sometimes not written out completely.

1.5 a)

min cTx+ dT y
s.t. Ax+By ≤ b y = |x| (1)

First reformulation, using z smallest number satisfying x ≤ z and−x ≤ z:

min cTx+ dT z
s.t. Ax+Bz ≤ b

x ≤ z
−x ≤ z.

(2)

Second reformulation, using x = x+−x− and |x| = x++x−:

min cTx+ − cTx− + dTx+ + dTx−

s.t. Ax+ −Ax− +Bx+ +Bx− ≤ b
x+ ≥ 0
x− ≥ 0.

(3)

1.5 b)
Suppose (??) has feasible solution x (hence y = |x|), then choosing x+i = xi and
x−i = 0 if xi ≥ 0 and x+i = 0 and x−i = −xi if xi ≤ 0 gives a feasible solution of
(??). Moreover, the solution values coincide, implying that the optimal value
of (??) is at most that of (??).

Suppose (??) has feasible solution x+, x− with the property that for all i =
1, . . . , n, x+i > 0 ⇒ x−i = 0 and x−i > 0 ⇒ x+i = 0. Then setting xi = x+i − xi
and z = x+i + x−i gives a feasible solution for (??) with equal value, implying
that the optimal value of (??) is at most that of (??). If (??) has a feasible
solution that does not have the property then there are variables x+i > 0 and
x−i > 0. Setting x̂+i = x+i − min{x+i , x

−
i } and x̂−i = x−i − min{x+i , x

−
i } gives

ci(x̂
+
i − x̂

−
i ) = ci(x

+
i − x

−
i ) and, since di ≥ 0 and the i-th row of B is non-

negative, we obtain again a feasible solution and di(x̂
+
i − x̂

−
i ) < di(x

+
i − x

−
i ).

Hence a better feasible solution.

Suppose (??) has feasible solution x, z satisfying for all i = 1, . . . , n that zi = xi
or zi = −xi. Then, setting y = z and keeping x as it is is a feasible solution of
(??) with equal value, implying that the optimal value of (??) is at most that of
(??). If (??) has a feasible solution that does not have the property then there
exist variables zi > xi and zi > −xi. Clearly, since di ≥ 0 and the i-th row of
B is non-negative, diminishing the value of zi yields another feasible solution
with better objective value.
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1.5 c)
The set {x ∈ IR | x−2|x| ≤ −1, |x| ≤ 1} is not even connected, let alone convex.
Minimizing x gives local optimum x = 1, whereas x = −1 is the global optimum.

———————-

1.15 a)

min (9− 1.2)x1 + (8− 0.9)x2
s.t. 1

4x1 + 1
3x2 ≤ 90

1
8x1 + 1

3x2 ≤ 80
x1 ≥ 0, x2 ≥ 0

(4)

1.15 b(i))

min (9− 1.2)x1 + (8− 0.9)x2 − 7x3 − 7x4
s.t. 1

4x1 + 1
3x2 − x3 ≤ 90

1
8x1 + 1

3x2 − x4 ≤ 80
x3 + x4 ≤ 50
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0

(5)

1.15 b(ii))
The easiest way is to solve the LP with the discounted price for raw material.
If the optimal solution yields a total bill for raw materials of at least of $300
then this is the best decision. If not, solve the LP as in a) and solve the LP
with the extra restriction that the total raw material cost is $300. Choose the
best of these two solutions.

———————-

2.6 a). Solution by Frank Reinders
Proof. y ∈ C ⇒ y =

∑n
j=1 λjAj , for λj ≥ 0, j = 1, . . . , n. Suppose

|{j | λj > 0}| = m + 1 (more can be dealt with by induction). Number them

π(1), . . . , π(m+ 1). Then, y =
∑m+1
j=1 λπ(j)Aπ(j).

The equation µ1Aπ(1) + . . . + µm+1Aπ(m+1) = 0 has a solution with |{j | µj 6=
0}| ≥ 1, since Aj ∈ IRm, ∀j. Hence, ∀c ∈ IR,

y =

m+1∑
j=1

λπ(j)Aπ(j) =

m+1∑
j=1

λπ(j)Aπ(j) − c
m+1∑
j=1

µjAπ(j) =

m+1∑
j=1

(λπ(j) − cµj)Aπ(j).

Choose c such that λπ(j) − cµj ≥ 0, j = 1, . . . ,m+ 1, with equality for at least
one of them. (Show how to do this.) 2
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2.6 b). Solution by Frank Reinders
Proof. Similar to the proof of a). Now working with m+2 positive λ’s and the
fact that Aπ(2)−Aπ(1), . . . , Aπ(m+2)−Aπ(1) ∈ IRm are linearly dependent. Hence

non-all-equal 0 values of µ2, . . . , µm+2 exist with
∑m+2
j=2 µj(Aπ(j) − Aπ(1)) = 0.

Choosing µ1 = −
∑m+2
j=2 µj yields

∑m+2
j=1 µj = 0 and

∑m+2
j=1 µjAπ(j) = 0. Check

that again ∀c ∈ IR, we can write y =
∑m+2
j=1 (λπ(j) − cµj)Aπ(j), this time also

verifying that
∑m+2
j=1 (λπ(j) − cµj) = 1. Then again, choosing c appropriately

will make (at least) one of the λπ(j) − cµj equal, keeping the others ≥ 0 and
their sum equal to 1. 2

———————-

2.15. Solution by Panagiotis Saridis
Proof. It is easy to check that x ∈ L ⇒ x ∈ {z ∈ P | aTi z = bi, i =
1, . . . , n − 1}. Take x ∈ {z ∈ P | aTi z = bi, i =, . . . , n − 1}. Let A′ be the
matrix with the n − 1 rows ai, i = 1, . . . , n − 1. Then rank(A′) = n − 1,
and thus nul.space(A′) has dimension 1, hence it can be written as. Clearly,
(x − u), (x − v), (u − v) ∈ nul.space(A′) implying that x, u and v lie on one
line, ` say. u is an extreme point on the intersection P ∩ `, since otherwise it
could be expressed as the convex combination of two other points on ` in P ,
contradicting that u is a vertex of P . Same for v. Clearly ` ∩ P can have only
two extreme points. This implies that x must be a convex combination of u and
v, hence x ∈ L. 2

———————-

3.7. Solution essentially by Frank Reinders
⇐). Suppose x is not optimal⇒ ∃ feasible x′ with cTx′ < cTx⇒ cT (x′−x) < 0.
Clearly, A(x′ − x) = 0 and x′i ≥ xi for all i ∈ Z. Thus d = x′ − x is feasible for
Ad = 0, di ≥ 0, i ∈ Z and has objective value < 0, a contradiction.

⇒). Suppose there exists a feasible d with cT d = δ < 0. Then x + εd
is a feasible solution for ε > 0 small enough s.t. xi + εdi ≥ 0 for i /∈ Z.
cT (x+ εd) = cTx+ εδ < cTx, a contradiction.

———————-

3.18.
a). Correct.
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b). Correct.
c). Not correct.
d). Not correct. Example with multiple optima.
e). Not correct. Example with multiple optima.

———————-

4.26. Solution by Panagiotis Saridis
Proof. Notice that the cone {x ∈ IRn | Ax = 0, x ≥ 0} contains a vector x 6= 0
if and only if it contains a vector x with

∑n
i=1 xi = 1. Thus we may state (a)

in the following equivalent form:

(a) There exists a solution to A′x = b, x ≥ 0, with A′ the matrix obtained from
A by adding an extra last row of all 1-elements, and bT = (0, 1).

Then Farkas Lemma, as stated in Theorem 4.6 of [B&T], that either (a) is
true or

(b) There exists a vector p′ such that (p′)TA′ ≥ 0T and (p′)T b < 0.

Let (p′)T = (pT , p′m+1). Then (b) in in terms of the original matrix A says that

pTA+ p′m+11T ≥ 0 and p′m+1 < 0 ⇒ pTA > 0. 2

———————-

4.31.
Proof. Consider the LP

max 1T p,
s.t. (P − In)p = 0,

p ≥ 0.
(6)

with dual

min 0T y,
s.t. yT (P − In) ≥ 1T .

(7)

Adding over all constraints of the dual yields
∑n
i=1

∑n
j=1 pijyi −

∑n
i=1 yi ≥ n.

Since
∑n
j=1 pij = 1 the inequality becomes 0 ≥ n, which is clearly impossible.

Thus the dual is infeasible. Since p = 0 is a solution to (??), this problem must
be unbounded, implying the feasible cone of (??) contains a solution p 6= 0,
hence also one with pT 1 = 1. 2
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———————-

4.35.
a.

max 0Tx
s.t. Ax ≤ b

Dx ≤ d

b. The dual of the problem in a is

min bTu+ dT v
s.t. uTA+ vTD = 0T

u ≥ 0, v ≥ 0

If P ∩Q = ∅ then the primal problem is infeasible. Hence the dual is infeasible
or unbounded. The dual is feasible since u = 0, v = 0 is a feasible solution. I am
pretty sure that this is the right approach but I don’t seen directly how to finish
the argument. Suggestions are most welcome

———————-

4.39.
Proof. Let d be defined by A′d = 0 with rank(A′) = n− 1. Suppose f, g ∈ C
exist such that d = λf + (1− λ)g for some λ ∈ (0, 1). f, g ∈ C ⇒ A′f ≥ 0 and
A′g ≥ 0, which together with A′d = λA′f +(1−λ)A′g = 0 implies that A′f = 0
and A′g = 0. Since the nulspace of A′ has dimension 1, i.e., is a line through 0,
d, f and g must be scalar multiples of each other.

Let I = {i | aTi d = 0} and suppose that I contains no set of n − 1 linearly
independent constraints, but it does contain a set of n− 2 linearly independent
constraints. (For I containing less than n − 2 linearly independent constraints
the proof is similar.) Then there exists at least one constraint h independent
of the ones in I such that aTh d > 0, and there exists a vector y ∈ C such that
aTi y = 0, ∀i ∈ I and aTh y = 0, which in fact is an extreme ray of C. But then
f = d− εy ∈ C and g = d+ εy ∈ C, for ε > 0 small enough. 2

———————-
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4.40.
Proof. (a). Suppose Pr is not bounded for some r ≥ 0. This implies that
there exists a point x ∈ Pr and a direction d such that ∀λ > 0, x+ λd ∈ Pr. ⇒∑n
i=1 a

T
i x+ λ

∑n
i=1 a

T
i d = r ⇒

∑n
i=1 a

T
i d = 0. Clearly, d ∈ C, i.e., aTi d ≥ 0,∀i,

hence
∑n
i=1 a

T
i d = 0 ⇒ aTi d = 0,∀i.

(b). Clearly,
∑n
i=1 ai is linearly independent of any subset of n − 1 out of the

{a1, . . . , am}. Hence, the constraint
∑n
i=1 a

T
i x = r together with a set of n− 1

linearly independent active inequalities from among those that define C define
an extreme point of P , while at the same time the n−1 active constraints define
an extreme ray of C. 2

———————-

4.44(b).
lin(P ) = {x ∈ IR2 | 2x1 + x2 = 0}, thus P does not have any extreme points.
But neither does it have any extreme rays since the recession cone just consist
of the lineality space.

———————-

5.9.
Proof.

F (λb) = min cTx
s.t. Ax = λb

x ≥ 0

which by strong duality duality is equal to

F (λb) = max λpT b = λmax pT b
s.t. pTAx ≤ cT

which by strong duality is equal to λF (b). 2

———————-

6.1.
Proof. Given an optimal solution to the LP-problem. In the basic feasible
optimal solution, at most m variables are positive. Round these up to the
nearest integer. Let this give a solution with value K (patterns). Rounding
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up adds at most m to the value of the LP-solution. However, this may not
be a feasible solution, because the number of pieces of width i may exceed the
demand bi. If so, then take any pattern j with xj > 0 that contains width
wi, i.e., with aij > 0. Take one of them and remove one occurrence of width
wi. This leads to the occurrence of a pattern j′ which is equal to j but with
aij′ = aij − 1, and hence setting xj′ → xj′ + 1 and xj → xj − 1. The total
number of patterns does not change. Continuing until of each width exactly bi
is produced gives a solution of value K. 2

———————-

7.2. Solution by Frank Reinders

• xij := production in month j;

• Sj := stock at the end of year j − 1;

• aij := tons of wood from forest i that can be collected in year j;

• uj := upper bound on tons of wood collected in year j;

• dj := demand in year j;

• cj := cost per unit of stock at the end of year j − 1.

The LP-formulation

min
∑
j cjSj

s.t. Sj = Sj−1 +
∑M
i=1 xij − dj , ∀j∑M

i=1 xij ≤ uj , ∀j
Sj ≥ 0, ∀j
S0 = 0

0 ≤ xij ≤ aij +
∑j−1
k=1(aik − xik), ∀i ∀j

———————-

7.14.
Proof. Take solution f . If fij < 0 then replace the column in A corresponding
to (i, j), which by slightly confusing notation is denoted A(i,j), by its negative
−A(i,j). This corresponds to reversing the direction of (i, j) in the graph. Doing
so for all negative fij we obtain a matrix A′, for which |f |, the absolute value of
f , satisfies A′|f | = 0. Thus we apply Lemma 7.1 to obtain K simple circulations
on cycles with forward arcs only. Take any such simple circulation fCk . For all
arcs (i, j) that have not been reversed, define hCk

ij = fCk
ij and for all arcs (i, j)

that have been reversed, define hCk
ij = −fCk

ij , corresponding to a negative unit
of flow on the original arc (i, j). 2

7



———————-

7.17a.
Proof. It is trivially true that the existence of a negative cost cycle with in-
finite capacities on each of its arcs implies an unbounded optimal solution value.

Now assume we have an optimal flow f with unbounded value. Applying the
trick to connect all supply nodes from an auxiliary s and all demand nodes
to an auxiliary t with appropriate capacities, and an additional arc (t, s) with
capacity B, with B sum of supplies (equal to sum of demands). All costs on
these arcs are 0. f is extended to a flow circulation on this network in the
obvious way, keeping the same objective value. We call the flow circulation
again f .

According to the Flow Decomposition Theorem a finite number of simple
circulations f1, . . . , fk exist, corresponding to directed cycles C1, . . . , Ck, such
that f can be written as f =

∑k
i=1 aifi, for positive scalars ai. Hence there

must be at least one of the directed cycles that has negative cost. Suppose that
each such negative cost cycle has at least one arc of bounded capacity and let
ui be the minimum capacity of an arc on cycle Ci. This clearly implies that
ai ≤ ui. Hence the flow on each arc (i, j) ∈ ∪ki=1Ci is in

∑k
i=1 aifi bounded by∑k

i=1 ui. This contradicts the fact that f has unbounded value. 2

7.17b. For uncapacitated problems , provide a proof based on the network
simplex method.
Proof. In this case trivially the existence of a negative cost cycle (with by
definition unbounded capacity) has an unbounded optimal solution value.

Suppose there does not exist any negative directed cost cycle in the network.
This implies that in each iteration of the network simplex method any negative
cost cycle must have a backward arc, which is bounding the augmentation of
the flow. Hence the flow will never become unbounded. 2

———————-

7.19.
For a maximum s-t-flow to be infinite, there must exist a path from s to t con-
sisting of only uncapacitated arcs. Thus, remove from the graph all other arcs
and see if a path from s tot t exists in the remaining graph, which is easily done
by exhaustive search in O(|A|) time.
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———————-

7.20.
(a). The max flow problem can be written as

min
∑

(s,i)∈A fsi
s.t.

∑
(i,j)∈A fij −

∑
(j,i)∈A fji = 0, ∀i ∈ N \ {s, t}

0 ≤ fij ≤ uij , ∀(i, j) ∈ A

The dual to the max flow problem is

min
∑

(i,j)∈A uijqij
s.t. qij + pi − pj ≥ 0, ∀(i 6= s, j 6= t) ∈ A

qij − pi ≥ 1, ∀(s, i) ∈ A
qij + pj ≥ 0, ∀(j, t) ∈ A

qij ≥ 0, ∀(i, j) ∈ A

(b). Take any cut S. Let A(S) := {(i, j) ∈ A | i ∈ S, j /∈ S} and set

qij =

{
1 ∀(i, j) ∈ A(S)
0 otherwise.

It is clear that the objective value is indeed the size of the cut. We need to show
that it can be made into a feasible solution by setting the right values for the
pi’s. It is a matter of checking the inequalities to see that given the choice of q
above the following is a feasible solution for p:

pi =

{
−1 ∀i ∈ S
0 ∀i /∈ S.

By LP-complementary slackness qij(uij − fij) = 0. Thus fij = uij ∀(i, j) ∈
A(S). Also notice that with the choice of q and p, for any cut S all dual in-
equalities are satisfied with equality, which gives the freedom to choose any flow
satisfying fij = uij ∀(i, j) ∈ A(S). Argue this can be made into a feasible flow
if only if A(S) corresponds to a minimum cut in the graph.

———————-

7.28.
(a). Trivial.

(b). If I am right there is an error here: it should be

θ̄j = min{θ∗j − θ∗k, ckj + pj − pk}.

9



Since pj remains the same and ∀i ∈ S, pi is raised by the same amount θ∗k, θ∗j
is diminished by θ∗k and the same index i ∈ S is minimum. This value must be
compared to ckj + pj − pk.
(c),(d). It could be that not only k becomes labeled, but several other nodes
become labeled simultaneously (if k is not the unique argminh/∈S θ

∗
h). In that

case we should select the minimum from θ∗j − θ∗k and ckj + pj − pk for all k that
become labeled, clearly taking as many basic comparisons as there are newly
labeled vertices. Minimizing θ̄j over all j /∈ S requires O(n) steps. Thus finding
one augmenting path takes O(n2) steps. Implementing this in the primal-dual
algorithm, after at most nB augmenting paths we find the optimal solution,
yielding overall running time of O(n3B).

———————-

7.32. Solution by Frank Reinders
(a). Let i ∈ I. If there is only one j such that (i, j) ∈ A then infinite number
of bids of i go to j, whence j ∈ J . Otherwise suppose there is some subset of
projects J ′ with for j′ ∈ J ′, (i, j′) ∈ A on which i stops bidding at some point
in time. Then infinite bidding on the projects j /∈ J with (i, j) ∈ A makes them
less profitable then some project in J ′, contradicting the stopping of the bidding
on it. Hence J ′ = ∅ and for all j with (i, j) ∈ A, we have j ∈ J .

(b). As we argued before, each project in the set J receives an infinite number
of bids. On the other hand, as argued under (a) in the proof of Theorem 7.15,
once a project receives a bit it remains assigned to some person. Thus after
some point in time the persons not in I stop bidding, implying they have been
assigned and there is some project k outside J that never received a bid. But
by the infinite number of bids on projects in J from persons in I, these projects
will eventually go to a person in I. This implies that eventually all persons in I
would receive a project from among J and the bidding would stop, contradicting
the infinite bidding.

(c). By (a) and (b) the number of projects that are adjacent to the set of per-
sons I is less than I|, whence not every person in I can receive a project.

———————-

8.1 Solution by Frank Reinders.
First prove the RT = R. Then it is a matter of doing the tedious calculations
to find both results.

———————-
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8.2 Solution by Frank Reinders.
I just give a rough sketch of the proof. A crucial observation for the proof
is that

RD1/2a = ‖D1/2a‖e1 = ((D1/2a)TD1/2a)1/2e1 = (aTDa)1/2e1

implies that

e1 =
RD1/2a√
aTDa

.

This has the consequence that

RD1/2(x− z)− e1
n+ 1

= RD1/2

(
(x− z)− 1

n+ 1

Da√
aTDa

)
.

Then it is a matter of tedious calculations to prove that

x ∈ E′ ⇔ (x− z̄)T D̄(x− z̄) ≤ 1

⇔
(
RD1/2(x− z)− e1

n+ 1

)T (
n2

n2 − 1

(
I − 2

n+ 1
e1e

T
1

))−1(
RD1/2(x− z)− e1

n+ 1

)
⇔ T (x) ∈ E′0.

———————-

10.1.
Choose M = mini{bi − f}, introduce binary variables yi, i = 1, . . . ,m, and
write

aTi x ≥ bi − (1− yi)M, ∀i∑m
i=1 yi ≥ k,

yi ∈ {0, 1}, ∀i.

———————-

10.4 Solution by Frank Reinders.
Let Ai be the number of modules of type A to be replaced in year i, and similarly
Bi, Ci and Di. Let Ei denote the number of complete engines to be bought.
We use cAi to denote the unit costs for module A in year i, and similarly for
B,C,D,E, as given in Table 10.2 of the book. And let rAi denote the forecasted
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requirements for module A in year i, and similarly for B,C,D,E, as given in
Table 10.1 of the book. Then the LP becomes

min
∑
X=A,...,E

∑
i=1,2,3 c

X
i Xi

s.t.
∑j
i=1Xi + Ei ≥

∑j
i=1 r

X
i + rEi , i = 1, 2, 3, X = A,B,C,D

E1 ≥ 1

E1 + E2 + E3 ≥ 3

Xi ∈ ZZ, i = 1, 2, 3, X = A,B,C,D,E

———————-

10.11 Solution by Frank Reinders.
Take n = m = 2, then the solution y1 = y2 = 1

2 , x11 = x22 = 1, x12 = x21 = 0
is in PAFL but not in PFL.

———————-

10.13 Solution by Frank Reinders.
Proof. Pmcut ⊆ Psub: Take any set S ⊆ N . Let SC = N \ S consist of the
nodes {v1, . . . , v|SC |. Define C0 = S and Ci = {vi}, i = 1, . . . , |SC |. Then for
any x ∈ Pmcut we have ∑

e∈δ(C0,C1,...,C|SC |)

xe ≥ |SC |,

which implies ∑
e∈E(S)

xe =
∑
e∈E

xe −
∑

e∈δ(C0,C1,...,C|SC |)

xe

≤ n− 1− |SC |
= |S|+ |SC | − 1− |SC |
= |S| − 1,

hence, x ∈ Psub.

Psub ⊆ Pmcut: Take any partition C0, C1, . . . , Ck. If x ∈ Psub then for any set
Ci in the partition we have ∑

e∈E(Ci)

xe ≤ |Ci| − 1,
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which implies that

∑
e∈δ(C0,C1,...,Ck)

xe = n− 1−
k∑
i=0

∑
e∈E(Ci)

xe

≥ n− 1−
k∑
i=0

(|Ci| − 1)

= n− 1− (n+ k + 1)

= k,

implying x ∈ Pmcut 2

———————-

10.14.
Proven in the same way as 10.13 but more straightforward.

———————-

11.6.
Let i be the state where a new page starts with i. Let f(i) denote the total
attractiveness of the layout for the items i, i+ 1 . . . , n, given that item i starts
at a new page. We wish to find f(1). The following backward recursion solves
the problem:

f(i) = max
j=i,i+1,...,n

{cij + f(j + 1)} ,

with

f(n+ 1) = 0.

———————-

11.14.
This problem I explained on the blackboard how to solve and I copy the parts
of my notes that treat it here below.

Shortcutting the union of the MST and the PM gives a tour of length at most
ZMST +ZPM . Notice that the length of a perfect matching on a (even) subset
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of the nodes has length at most 1
2 the length of the TSP-tour on the same subset

of nodes, hence of length at most 1
2 the length of the TSP-tour on all the nodes.

Therefore,

ZMST + ZPM ≤ ZTSP +
1

2
ZTSP

.
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