Corrections to proofs in "An equilibrium closure result for discontinuous games"*

Erik J. Balder, Mathematical Institute, University of Utrecht, P.O. Box 80.010, 3508 TA Utrecht, Netherlands.

Spring, 2012

G. Carmona has kindly pointed out to me that two proofs in my paper "An equilibrium closure result for discontinuous games" (Economic Theory 48 (2011), 47-65), a paper from now on referred to as ECR, contain errors. Here I correct these errors. As a consequence, all results in ECR, and in particular the main result in Theorem 1, remain valid as stated. Below notation, references, etc. are borrowed freely from ECR.

Proof of Lemma 5 in ECR. The proof must be corrected as follows. By compactness of S and Z the function $s \mapsto \phi_i(s) := \inf_{z \in L_s} z_i$ is not upper semicontinuous, as I claimed in ECR, but lower semicontinuous (as a direct consequence of Berge’s theorem). That still causes $(s, z) \mapsto \phi_i(s) - z_i$ to be Borel measurable on $S \times Z$, so the set E, consisting of all $(s, z) \in L$ such that $\phi_i(s) - z_i \geq 0$, is Borel measurable. Now observe that for every $s \in S$ the section E_s, which is precisely equal to $\arg\min_{z \in L_s} z_i$, is compact. This allows me to apply Theorem 1 in reference [7] of ECR, and it yields that $s \mapsto \arg\min_{z \in L_s} z_i$ has a measurable selection $\hat{q}_i : S \to Z$, just as was stated in Lemma 5.

Proof of Case 2 on p. 64 of ECR. As stated, the proof of case 2 makes sense until its last line: “So (19) now follows from ... $\hat{q}_i \leq q_i^{**}$”. This line must be replaced by an application of the following lemma, which implies that (19) of ECR is indeed valid in case 2.¹

Lemma For every fixed $\bar{s}_i \in S_i$

\[
\int_{S} q_i^{**} d\tilde{\beta} \geq \int_{S_{-i}} \hat{q}_i(\bar{s}_i, \cdot) d\tilde{\beta}_{-i}.
\]

¹I am very grateful to Guilherme Carmona (University of Cambridge, UK) for bringing these omissions to my attention.

¹In addition, in lines 15-16 of p. 64 \hat{q}_i must be read as \hat{q}_i^i.

*I am very grateful to Guilherme Carmona (University of Cambridge, UK) for bringing these omissions to my attention.
Proof. By assumption (3) in ECR there exists a subsequence \(\{S_i^{(n')}\}_{n'} \) (which is \(\tilde{s}_i \)-dependent, of course) and associated elements \(\tilde{s}_{i,n'} \in S_i^{(n')} \) such that \(\tilde{s}_i = \lim_{n' \to \infty} \tilde{s}_{i,n'} \). By the definition of the mixed Nash equilibrium profiles (\(\alpha_i \) dependent, of course) and associated elements \(\bar{\alpha}_{i-} \), to handle the right side in (2), I define a sequence \(\{\rho_i^{(n')}\}_{n'} \) in Prob(\(S_{-i} \times Z \)) by setting \(\rho_i^{(n')} (A \times B) := \bar{\alpha}_{i-}^{(n')} (A \cap (\tilde{q}_i^{(n')})^{-1}(B)) \), where \(\tilde{q}_i^{(n')} := q_i^{(n')} (\tilde{s}_{i,n'}, \cdot) : S_{-i} \to Z \) defines a continuous function (use (4) in ECR). The definition of \(\rho_i^{(n')} \) is motivated by the identity
\[
\int_{S_{-i}} q_i^{(n')} (\tilde{s}_{i,n'}, \cdot) d\bar{\alpha}_{i-}^{(n')} = \int_{S_{-i} \times Z} z_i \rho_i^{(n')} (d(s_{-i}, z)),
\]
and its definition mimicks the definition of \(\pi_i^{(n)} \in \text{Prob}(S \times Z) \), which plays a major role in ECR. Recall here the following standard convention: any probability measure on \(S_{-i} \), such as \(\bar{\alpha}_{i-}^{(n')} \), is automatically extended to a probability measure on the larger set \(S_{-i} \), simply by setting it to zero on \(S_{-i} \setminus S_{-i}^{(n')} \); see p. 49 in ECR. I can now mimick arguments given in ECR by replacing the \(\pi_i^{(n)} \) by the current \(\rho_i^{(n')} \). This gives me (i)–(iii) stated below. Namely, just as in the proof of Lemma 1 in ECR, the tightness of \(\{\rho_i^{(n')}\}_{n'} \), which results from combining the compactness of \(Z \) with the weak convergence of \(\{\bar{\alpha}_{i-}^{(n')}\}_{n'} \) to \(\bar{\beta}_{-i} \) as in ECR, implies

(i) \(\{\rho_i^{(n')}\}_{n'} \) contains a subsequence \(\{\rho_{i''}^{(n'')}\}_{n''} \) which converges weakly to some limit probability measure \(\rho^* \)

by applying both Prohorov’s theorem and its converse (both are recalled in ECR). Here I accept that both \(\{\rho_{i''}^{(n'')}\}_{n''} \) and \(\rho^* \) may depend on the initial choice of the fixed \(\tilde{s}_i \in S_i \). By Propositions 2 and 3 of ECR it follows from (i) that the support \(\text{supp} \rho^* \) is contained in \(L_{s_{i,n'}} \supset \text{supp} \rho_i^{(n')} \subset \text{supp} \rho_i^{(n')} \), whence in \(L_{s_{i,n'}} \{(s_{-i}, \tilde{q}_i^{(n')} (s_{-i})) : s_{-i} \in S_{-i}^{(n')} \} \). By \(\tilde{s}_{i,n'} \to \tilde{s}_i \) and the definition of the Kuratowski limes superior set \(L := L_{s_{i,n'}} \{(s, \tilde{q}_i^{(n)} (s)) : s \in S^{(n)} \} \) in Lemma 1 of ECR, this implies

(ii) \(\text{supp} \rho^* \) is contained in the section \(L_{\tilde{s}_i} := \{(s_{-i}, z) \in S_{-i} \times Z : (\tilde{s}_i, s_{-i}, z) \in L \} \).

Because \(\bar{\alpha}_{i-}^{(n'')} \) is the \(S_{-i} \)-marginal of \(\rho_i^{(n'')} \) for every \(n'' \), I also conclude directly from (i) that

(iii) \(\bar{\beta}_{-i} \) is the marginal of \(\rho^* \) on \(S_{-i} \);

cf. step 1 in the proof of Lemma 2 in ECR. Now for \(n' \to \infty \) the left side in (2) converges to the left side of (1) by Lemma 4.b in ECR. Also, if I replace \(n' \) on the right of (2) by \(n'' \), then the resulting expression converges to \(\int_{S_{-i} \times Z} z_i \rho^* (d(s_{-i}, z)) \) for \(n'' \to \infty \), by (i) and the identity (3). So by the above I obtain
\[
\int_S q_i^{(n'')} d\tilde{\beta}_i \geq \int_{S_{-i} \times Z} z_i \rho^* (d(s_{-i}, z)) = \int_{L_{\tilde{s}_i}} z_i \rho^* (d(s_{-i}, z)),
\]
where the equality on the right holds by (ii). Finally, I observe that for all \((s_{-i}, z) \in L_{\tilde{s}_i} \), the definition of \(\tilde{q}_i \) gives \(z_i \geq \tilde{q}_i (\tilde{s}_i, s_{-i}) \), so the rightmost expression above is
larger than or equal to

\[\int_{L_i} q_i^l(\bar{s}_i, s_{-i}) \rho^*(d(\bar{s}_i, z)) = \int_{S_{-i} \times Z} q_i^l(\bar{s}_i, s_{-i}) \rho^*(d(s_{-i}, z)) = \int_{S_{-i}} q_i^l(\bar{s}_i, \cdot) d\bar{\beta}_{-i}, \]

where I use (ii) for the first identity and (iii) for the second one. This proves (1).