On subdifferential calculus — highlights

September 2010

Fundamentals:

Working with +o00 and —oo:

e Voe(—oo400] @ + (+00) = (+00) + av = +00.
e Vo[-0 100) O — (+00) = o + (—00) = —00.

. neither (+00) — (+00) nor (+00) + (—o0) ete.
defined!

. carefull 24 (+00) =3+ (+00) 2 =3
e Vae(0,400] @+ (+00) = 400

e Vae[—00,0) @+ (+00) = —00

. By definition: 0 - (4+00) =0 (—o0) = 0.
e Vaer @/ (+00) = a/(—o0) = 0.

. neither (+00)/(+00) nor (+00)/(—00) ete. de-
fined!

e (+00)/(400), etc. undefined.
. careful! 2/(+00) = 3/(+00) A 2 =3



Convex sets in R":
Definition A.1: S C R" is convex if
Vxl,megv)\e[(),l])\itl + (1 — )\>$2 c S.

Convex functions:

Definition 2.1: Let S C R" be convex. Then
f:S — (—o0,+00] is convex on S if

VorasesVacioa A1+ (1=A)x2) < Af(21)+(1=A) f(22).

Also, f is strictly convexr on S it

Vzlzl,:EgES,JJ;c:EQV/\E(O,l)f()‘xl_l'(1_)\)xZ) < )\f($1)+<1_)\>f(33'2>

Remark: f # —oo, so A(+00) + (1 — A)(—00)

cannot confuse us.

Associated definition: Let f : S — [—00, +00).
Then: fis (strictly) concaveon S < — f is (strictly)
convex on S.

Example: fi(z) := p'z + a is affine, ie., both
convex and concave, on R” for any p € R"” and o €
R. It is neither strictly convex nor strictly concave.

Example: fy(z) := (3|x|? is strictly convex on R"
it 8> 0. It is strictly concave on R" if 5 < 0.
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Example (Exercise 2.1c): Let S := R,. Define
f3: 8 — (—00,+00] by f3(x) :==1/z if z > 0 and
by f3(0) :=~. Then f3 can only be made convex on
S by setting v = +00.

Example (Exercise 2.7b): Define f; : R —

(—o0,+00] by fa(z) =1—+v1—2?if || <1 and
fa(x) = 40 if |x| > 1. Then f; is convex on R.

Definition (Exercise 2.2): Let S C R" be con-
vex. Then f : S — (—o0,+00| is quasiconvex on
S it

VaerSe :={x € S f(z) < a} is convex
Every convex function on R" is quasiconvex, but not

conversely.

Domain extension by adding values +o0o:

Exercise 2.5: Let S C R" be convex. Let f: 5 —
(—00, +¢]. Define f: R" — (—o00, 00| by

v | fle) ifxeS
f@”_{+m ifzds.

Exercise: f convex on R" < f convex on S.

Consequence: From now on we mainly consider
convex functions on R". This is thanks to working
with 400!



New habit: Speak of “convex functions” instead
of “convex functions on R™”.

Definition 2.2: Let f : R" — (—o00,+00|. The
essential domain of f is defined by

dom f:={rx e R": f(x) < +o0}.

Exercise: f convex = dom f is convex, but not con-
versely.

Connections between convex sets and con-
vex functions:

From convex sets to convex functions:

Definition 2.3: Let S C R". The indicator func-
tion xg of S is defined by

(z) = 0 fxelS
XS = 4oo iz € S.

Exercise: S convex set < xg convex function.

From convex functions to convex sets:

Definition 2.4: Let f : R” — (—o00,+00|. The
epigraph epi f C R"™ is defined by

epi fi=A{(z,y) e R" xR : f(z) <y}
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Exercise: f convex function < epi f convex set.

Remark: Many proofs of results for convex func-
tions “work” on their convex epigraphs by means of
separation results (see Appendix A).

Example: For S C R" let f := xg. Then epif =
S xR,.

From conver functions to more conver functions:

Easy: Let f; : R" — (—o00,+00]| be convex and
let a; € [0,+00] for e = 1,...,m. Then f(x) =
> o i fi(x) defines a convex function, as does f(x) 1=
maXj<i;<m @ifi(x)-

Exercise 2.6: Let S C R" be convex. Let f : .S —
R be convex and let ¢ : D — R be convex and
nondecreasing on a convex interval D C R, with

D D f(S). Then h(z) := g(f(x)) defines a convex
function A : S — R.

Example (Exercise 2.7): a. If f : R" — [0, +oq]
is convex on R”, then so is f2. However, f? need not
be convex if f can also take negative values.

b. f(z):=1—+/1—a2is convex on [—1,+1].

c. f(x) := exp(z?) is convex on R.



Subdifferentials and subgradients of convex
functions

Definition 2.5: Let f : R" — (—o0, 4], f #
+00, and let xg € domf (so f(zg) € R).
a. A subgradient of f at xyis a & € R"™ with

f(x) > f(zg) + (2 — x0) for all z € R™.
b. The subdifferential of f at x is the set
Of(xg) :={& € R" : £ is subgradient of f at x}.
This set may be empty!

f(zg) = +00)

Observation: If zy ¢ domf (so
= () is also possible

then df(xg) = 0. But 8f(af0)

for xy € dom f.

Example: a. Let f(x) :=1—+1—2x%on [—1,+]]
and define f(z) == 400 if x < —1 or x > 1. Then

f is convex and 1 € dom f. However, 9f(1) = 0.
b. Let f(z) := |z|] on R. Then@ f(2) = {1},
Of(=8) = {~1} and 9f(0) = [~1,+1].

For differentiable convex functions: “subgradient
= gradient™:

Proposition 2.6: Let f : R" — (—o00,+00| be
convex. If f is differentiable at xy € int dom f, then

Of (o) = {V f(zo)}.



Here: “int” means “interior”.

Example (Exercise 2.9b): In previous example
with f(z) =1 — V1 —2%on |[—1,41] and f(x) =
+ooifr < —lorx > 1,onehas 0f(x) = {x/V1 — 2?}
for every x € (—1,1).

How to determine convexity of functions:

Proposition 2.7: Let S C R" be open and convex.
Let f:5 — R.
(¢) If f is differentiable, then f is convex on S <

Varases(V (1) = Vf(@2) (w1 — 22) 2 0.

(¢) If f is differentiable, then f is strictly convex
on S &

VxlaxQGSaxl?’éCQ(vf(xl) — Vf(:(jg))t<x1 — 552) > 0.

(22) If f is twice continuously differentiable, then
f is convex on S < the Hessian matrix

i) = (5550)

is positive semidefinite at every point = of S.

(¢3") If f is twice continuously differentiable, then
H(x) is positive definite at every point x of S' = f
is strictly convex on S




Definition: An nxn matrix M is positive semidef-
inite if d'Md > 0 for all d € R™. And M is positive
definite if d'Md > 0 for all d € R", d # 0.

Corollary 2.8: Let S C R be open and convex.
Let f: 5 — R.

(2) If f is differentiable, then f is convex [strictly
convex] on S < f’ is nondecreasing |increasing| on

(i1) If f is twice continuously differentiable, then
f is convex |[strictly convex| on S < f"(x) > 0

[f"(x) > 0] for all z € S.



MR-theorem and “small” KKT-theorem

Theorem 2.9 (Moreau-Rockafellar) Let f, g :
R™ — (—o00, +00| be convex. Then

VapernO f(20) + 0g(z0) C O(f + g)(o).
Moreover, if int dom f Ndom g # (). Then also

VaoerrO(f + g)(w0) C O f(20) + Og(x0).

Comment: First part is trivial. Proof of second
part goes by separating hyperplane Theorem A 4,
apphed to disjoint convex sets Ay and A, that are

“epigraph-like” — see syllabus.

Theorem 2.10 (“small KKT”): Let f: R" —
R be convex and let S C R" be nonempty convex.
Consider the optimization problem

(P) inf f(z).
reS
Then
z € S optimal for (P) < Jecppz Vaes (z—2) > 0.

Sketch of proof. Observe

T € S optimal for (P) < 0 € 9(f + xs)(T).
Then apply MR-theorem to right side.
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